HEAL DSpace

A direct method to quadrature rules for a certain class of singular integrals with logarithmic, Cauchy, or Hadamard-type singularities

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsalamengas, JL en
dc.date.accessioned 2014-03-01T02:07:17Z
dc.date.available 2014-03-01T02:07:17Z
dc.date.issued 2012 en
dc.identifier.issn 08943370 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29535
dc.subject integral equations en
dc.subject Nyström method en
dc.subject quadrature rules en
dc.subject singular integrals en
dc.subject.other Conducting strips en
dc.subject.other Direct method en
dc.subject.other Hadamard-type singularity en
dc.subject.other Integral equation formulation en
dc.subject.other Loss of accuracy en
dc.subject.other M method en
dc.subject.other Numerical example en
dc.subject.other Numerical quadrature en
dc.subject.other Potential problems en
dc.subject.other Quadrature rules en
dc.subject.other Singular integral en
dc.subject.other Wave diffractions en
dc.subject.other Integral equations en
dc.subject.other Numerical methods en
dc.title A direct method to quadrature rules for a certain class of singular integrals with logarithmic, Cauchy, or Hadamard-type singularities en
heal.type journalArticle en
heal.identifier.primary 10.1002/jnm.1863 en
heal.identifier.secondary http://dx.doi.org/10.1002/jnm.1863 en
heal.publicationDate 2012 en
heal.abstract Singular integrals of the form ∫-11 w(τ)f(τ)K(t,τ)dτ with logarithmic, Cauchy, or Hadamard-type singularities in addition to endpoint algebraic singularities w(τ) = (1 - τ2)± 1/2 are frequently encountered in integral equation formulations of potential problems. Some of the existing quadratures for the evaluation of such integrals only apply to preassigned values of the external variable t. Other fairly general rules suffer from loss of accuracy when t is close to any of the nodes of the quadrature. Finally, derivation of the rules is in general multistage, and thus, considerable analytical preprocessing is required. In this paper, a straightforward direct method is presented, which demonstrates the derivation of numerical quadrature rules for Cauchy-type and Hadamard-type integrals from corresponding quadratures pertinent to logarithmically singular integrals. The proposed rules share the following characteristics: (1) their derivation, based on first principles, is remarkably simple; (2) the external variable t may be arbitrarily selected; and (3) in their framework, the loss of accuracy referred to earlier is fully remedied. Numerical examples and case studies illustrate the simplicity, flexibility, and high accuracy of the algorithms. Application to the solution of an integral equation associated with wave diffraction by a perfectly conducting strip is exemplified. Copyright © 2012 John Wiley & Sons, Ltd. en
heal.journalName International Journal of Numerical Modelling: Electronic Networks, Devices and Fields en
dc.identifier.doi 10.1002/jnm.1863 en
dc.identifier.volume 25 en
dc.identifier.issue 5-6 en
dc.identifier.spage 512 en
dc.identifier.epage 524 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής