HEAL DSpace

A linguistic approach to model urban growth

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantelas, L en
dc.contributor.author Prastacos, P en
dc.contributor.author Hatzichristos, T en
dc.contributor.author Koutsopoulos, K en
dc.date.accessioned 2014-03-01T02:07:19Z
dc.date.available 2014-03-01T02:07:19Z
dc.date.issued 2012 en
dc.identifier.issn 19473192 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29541
dc.subject Cellular Automata en
dc.subject Fuzzy Logic en
dc.subject Parallel Connection of Partial Knowledge en
dc.subject Urban Growth en
dc.subject Urban Growth Modeling en
dc.subject.other Data driven en
dc.subject.other Data limitations en
dc.subject.other Growth factor en
dc.subject.other Growth modeling en
dc.subject.other Input variables en
dc.subject.other Linguistic approach en
dc.subject.other Methodological frameworks en
dc.subject.other Parallel connections en
dc.subject.other Partial knowledge en
dc.subject.other Thematic layers en
dc.subject.other Urban features en
dc.subject.other Cellular automata en
dc.subject.other Electric connectors en
dc.subject.other Fuzzy logic en
dc.subject.other Fuzzy set theory en
dc.subject.other Linguistics en
dc.subject.other Urban growth en
dc.subject.other cellular automaton en
dc.subject.other fuzzy mathematics en
dc.subject.other mapping en
dc.subject.other model test en
dc.subject.other model validation en
dc.subject.other parallel computing en
dc.subject.other urban growth en
dc.subject.other urbanization en
dc.subject.other Attica en
dc.subject.other Greece en
dc.title A linguistic approach to model urban growth en
heal.type journalArticle en
heal.identifier.primary 10.4018/jaeis.2012070103 en
heal.identifier.secondary http://dx.doi.org/10.4018/jaeis.2012070103 en
heal.publicationDate 2012 en
heal.abstract This paper presents a linguistic approach for modeling urban growth. The authors developed a methodological framework which utilizes Fuzzy Set theory to capture and describe the effect of urban feature s on urban growth and applies Cellular Automata techniques to simulate urban growth. Although several approaches exist that combine Fuzzy Logic and Cellular Automata for urban growth modeling, the authors focused on the ability to use partial knowledge and combine theory-driven and data driven knowledge. To achieve this, a parallel connection between the input variables is introduced which further allows the model to disengage from severe data limitations. In this approach, a number of parallel fuzzy systems are used, each one of which focuses on different types of urban growth factors, different drivers or restrictions of development. The effects of all factors under consideration are merged into a single internal thematic layer that maps the suitability for urbanization for each area, providing thus an information fow familiar to the human conceptualization of the phenomenon. Following, cellular automata techniques are used to simulate urban growth. The proposed methodology is applied in the Mesogeia area in the Attica basin (Athens) for the period 1990-2004 and provides realistic estimations for urban growth. Copyright © 2010, IGI Global. en
heal.journalName International Journal of Agricultural and Environmental Information Systems en
dc.identifier.doi 10.4018/jaeis.2012070103 en
dc.identifier.volume 3 en
dc.identifier.issue 2 en
dc.identifier.spage 35 en
dc.identifier.epage 53 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής