HEAL DSpace

A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Asouti, VG en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:07:19Z
dc.date.available 2014-03-01T02:07:19Z
dc.date.issued 2012 en
dc.identifier.issn 00207721 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29542
dc.subject evolutionary algorithms en
dc.subject hierarchical optimisation en
dc.subject probabilistic outages en
dc.subject unit commitment en
dc.subject.other Binary string en
dc.subject.other Candidate solution en
dc.subject.other Decision variables en
dc.subject.other Dispatch problems en
dc.subject.other Efficient chromosomes en
dc.subject.other External resources en
dc.subject.other Hierarchical evaluation en
dc.subject.other Monte Carlo Simulation en
dc.subject.other Objective functions en
dc.subject.other Optimisations en
dc.subject.other Solution methods en
dc.subject.other Start-ups en
dc.subject.other Unit commitment problem en
dc.subject.other Unit commitments en
dc.subject.other Chromosomes en
dc.subject.other Evolutionary algorithms en
dc.subject.other Monte Carlo methods en
dc.subject.other Costs en
dc.title A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages en
heal.type journalArticle en
heal.identifier.primary 10.1080/00207721.2011.604742 en
heal.identifier.secondary http://dx.doi.org/10.1080/00207721.2011.604742 en
heal.publicationDate 2012 en
heal.abstract This article presents a solution method to the unit commitment problem with probabilistic unit failures and repairs, which is based on evolutionary algorithms and Monte Carlo simulations. Regarding the latter, thousands of availability-unavailability trial time patterns along the scheduling horizon are generated. The objective function to be minimised is the expected total operating cost, computed after adapting any candidate solution, i.e. any series of generating/non-generating (ON/OFF) unit states, to the availability- unavailability patterns and performing evaluations by considering fuel, start-up and shutdown costs as well as the cost for buying electricity from external resources, if necessary. The proposed method introduces a new efficient chromosome representation: the decision variables are integer IDs corresponding to the binary-to-decimal converted ON/OFF (1/0) scenarios that cover the demand in each hour. In contrast to previous methods using binary strings as chromosomes, the new chromosome must be penalised only if any of the constraints regarding start-up, shutdown and ramp times cannot be met, chromosome repair is avoided and, consequently, the dispatch problems are solved once in the preparatory phase instead of during the evolution. For all these reasons, with or without probabilistic outages, the proposed algorithm has much lower CPU cost. In addition, if probabilistic outages are taken into account, a hierarchical evaluation scheme offers extra noticeable gain in CPU cost: the population members are approximately pre-evaluated using a small representative set of the Monte Carlo simulations and only a few top population members undergo evaluations through the full Monte Carlo simulations. The hierarchical scheme makes the proposed method about one order of magnitude faster than its conventional counterpart. © 2012 Taylor & Francis. en
heal.journalName International Journal of Systems Science en
dc.identifier.doi 10.1080/00207721.2011.604742 en
dc.identifier.volume 43 en
dc.identifier.issue 7 en
dc.identifier.spage 1322 en
dc.identifier.epage 1335 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής