dc.contributor.author |
Makris, E |
en |
dc.contributor.author |
Gkanis, V |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.contributor.author |
Housiadas, C |
en |
dc.date.accessioned |
2014-03-01T02:07:22Z |
|
dc.date.available |
2014-03-01T02:07:22Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
10255842 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29548 |
|
dc.subject |
3D reconstruction |
en |
dc.subject |
Abdominal aortic aneurysm |
en |
dc.subject |
Patient specific |
en |
dc.subject |
Structured grid generation |
en |
dc.subject.other |
3D reconstruction |
en |
dc.subject.other |
Abdominal aortic aneurysms |
en |
dc.subject.other |
Computational grids |
en |
dc.subject.other |
Computed Tomography |
en |
dc.subject.other |
DICOM format |
en |
dc.subject.other |
Digital imaging and communication in medicines |
en |
dc.subject.other |
Medical images |
en |
dc.subject.other |
Patient specific |
en |
dc.subject.other |
Rupture risk |
en |
dc.subject.other |
Small variations |
en |
dc.subject.other |
Structured grid |
en |
dc.subject.other |
Structured grid generation |
en |
dc.subject.other |
Blood vessels |
en |
dc.subject.other |
Computerized tomography |
en |
dc.subject.other |
Digital Imaging and Communications in Medicine (DICOM) |
en |
dc.subject.other |
Grid computing |
en |
dc.subject.other |
Mesh generation |
en |
dc.subject.other |
Three dimensional |
en |
dc.title |
A methodology to generate structured computational grids from DICOM data: Application to a patient-specific abdominal aortic aneurysm (AAA) model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/10255842.2010.518963 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/10255842.2010.518963 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
This study presents the generation of a multi-block structured grid on a real abdominal aortic aneurysm (AAA) acquired from Digital Imaging and Communication in Medicine (DICOM) data. With the use of a computed tomography exam (or medical images in standard DICOM format), the shape of a human organ is extracted and a structured computational grid is created. The structured grid generation is done by utilising Floater's and Gopalsamy et al.'s algorithm. The proposed methodology is applied to the AAA case, but it may also be applied to other human organs, enabling the scientist to develop an advanced patient-specific model. More importantly, the proposed methodology provides a precise reconstruction of the human organs, which is required in an AAA, where small variations in the geometry may alter the flow field, the stresses exerted on the walls and finally the rupture risk of the aneurysm. © 2012 Taylor & Francis. |
en |
heal.journalName |
Computer Methods in Biomechanics and Biomedical Engineering |
en |
dc.identifier.doi |
10.1080/10255842.2010.518963 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
173 |
en |
dc.identifier.epage |
183 |
en |