dc.contributor.author |
Mehleri, ED |
en |
dc.contributor.author |
Papageorgiou, LG |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T02:07:22Z |
|
dc.date.available |
2014-03-01T02:07:22Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
15707946 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29550 |
|
dc.subject |
Distributed energy resources (DER) |
en |
dc.subject |
Microgrid |
en |
dc.subject |
Mixed-integer linear programming (MILP) |
en |
dc.subject |
Model predictive control (MPC) |
en |
dc.subject |
Rolling horizon |
en |
dc.title |
A Model Predictive Control Framework for Residential Microgrids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/B978-0-444-59519-5.50066-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/B978-0-444-59519-5.50066-6 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this work, we consider the development of a decision making strategy built upon the Predictive Control (MPC) rolling horizon concept for the optimal operation of a microgrid, to satisfy the power and heat demands of a small neighborhood. The MPC problem is formulated as a Mixed Integer Linear Programming (MILP) model. The microgrid involves various technologies, such as photovoltaic (PV) arrays, microcombined heat and power (micro-CHP) units, conventional boilers and heat and electricity storage tanks. Electricity transfers are allowed between the dwellings and the grid. © 2012 Elsevier B.V. |
en |
heal.journalName |
Computer Aided Chemical Engineering |
en |
dc.identifier.doi |
10.1016/B978-0-444-59519-5.50066-6 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.spage |
327 |
en |
dc.identifier.epage |
331 |
en |