dc.contributor.author |
Kyritsi, ST |
en |
dc.contributor.author |
O'Regan, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:07:22Z |
|
dc.date.available |
2014-03-01T02:07:22Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
12013390 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29551 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84861414841&partnerID=40&md5=5be7ef4b5480e14b8900cb34d40d5776 |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Periodic scalar p-Laplacian |
en |
dc.title |
A morse theoretic approach to the existence of multiple solutions for nonlinear periodic problems |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a Carathéodory nonlinearity which asymptotically at infinity exhibits a p-linear growth. Using minimax arguments, together with truncation techniques and methods from Morse theory, we show that the problem has three nontrivial solutions. In the semilinear case (i.e., p=2), we show using Morse theory, that the problem has four nontrivial solutions. Copyright © 2012 Watam Press. |
en |
heal.journalName |
Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
291 |
en |
dc.identifier.epage |
318 |
en |