HEAL DSpace

A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gryllias, KC en
dc.contributor.author Antoniadis, IA en
dc.date.accessioned 2014-03-01T02:07:33Z
dc.date.available 2014-03-01T02:07:33Z
dc.date.issued 2012 en
dc.identifier.issn 09521976 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29573
dc.subject Condition monitoring en
dc.subject Fault detection en
dc.subject Rolling element bearings en
dc.subject Support Vector Machines en
dc.subject Vibration analysis en
dc.subject.other Automated diagnosis en
dc.subject.other Basic concepts en
dc.subject.other Classification procedure en
dc.subject.other Data preprocessing en
dc.subject.other Demodulated signals en
dc.subject.other Experimental data en
dc.subject.other Experimental test en
dc.subject.other Frequency domains en
dc.subject.other Industrial environments en
dc.subject.other Industrial Test Case en
dc.subject.other Normal condition en
dc.subject.other Order analysis en
dc.subject.other Physical model en
dc.subject.other Raw signals en
dc.subject.other Rolling Element Bearing en
dc.subject.other Rolling element bearings en
dc.subject.other Rotating speed en
dc.subject.other Rotation speed en
dc.subject.other Simulation data en
dc.subject.other Sudden change en
dc.subject.other Support vector en
dc.subject.other SVM classifiers en
dc.subject.other Test case en
dc.subject.other Two stage en
dc.subject.other Two-stage recognition en
dc.subject.other Computer simulation en
dc.subject.other Condition monitoring en
dc.subject.other Dynamic response en
dc.subject.other Fault detection en
dc.subject.other Feature extraction en
dc.subject.other Frequency domain analysis en
dc.subject.other Rotation en
dc.subject.other Signal detection en
dc.subject.other Vibration analysis en
dc.subject.other Support vector machines en
dc.title A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.engappai.2011.09.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.engappai.2011.09.010 en
heal.publicationDate 2012 en
heal.abstract A hybrid two stage one-against-all Support Vector Machine (SVM) approach is proposed for the automated diagnosis of defective rolling element bearings. The basic concept and major advantage of the method, is that its training can be performed using simulation data, which result from a well established model, describing the dynamic response of defective rolling element bearings. Then, vibration measurements, resulting from the machine under condition monitoring, can be imported and processed directly by the already trained SVM, eliminating thus the need of training the SVM with experimental data of the specific defective bearing. A key aspect of the method is the data preprocessing approach, which among others, includes order analysis, in order to overcome problems related to sudden changes of the shaft rotating speed. Moreover, frequency domain features both from the raw signal as well as from the demodulated signal are used as inputs to the SVM classifiers for a two-stage recognition and classification procedure. At the first stage, a SVM classifier separates the normal condition signals from the faulty signals. At the second stage, a SVM classifier recognizes and categorizes the type of the fault. The effectiveness of the method tested in one literature established experimental test case and in three different industrial test cases, including a total number of 34 measurements. Each test case includes successive measurements from bearings under different types of defects, different loads and different rotation speeds. In all cases, the method presents 100% classification success. © 2011 Elsevier Ltd. All rights reserved. en
heal.journalName Engineering Applications of Artificial Intelligence en
dc.identifier.doi 10.1016/j.engappai.2011.09.010 en
dc.identifier.volume 25 en
dc.identifier.issue 2 en
dc.identifier.spage 326 en
dc.identifier.epage 344 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής