HEAL DSpace

A systematic methodology for reliability improvements on SoC-based software defined radio systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Diamantopoulos, D en
dc.contributor.author Siozios, K en
dc.contributor.author Xydis, S en
dc.contributor.author Soudris, D en
dc.date.accessioned 2014-03-01T02:07:33Z
dc.date.available 2014-03-01T02:07:33Z
dc.date.issued 2012 en
dc.identifier.issn 1065514X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29574
dc.subject.other Aging phenomena en
dc.subject.other Clock frequency en
dc.subject.other Design constraints en
dc.subject.other Design time en
dc.subject.other Hotspots en
dc.subject.other Logic density en
dc.subject.other Low-power design en
dc.subject.other Micro architectures en
dc.subject.other On-chip temperature en
dc.subject.other Power densities en
dc.subject.other Reliability degradation en
dc.subject.other Reliability improvement en
dc.subject.other Silicon area en
dc.subject.other Silicon Technologies en
dc.subject.other Software-defined radios en
dc.subject.other Systematic methodology en
dc.subject.other Temperature increment en
dc.subject.other Temperature reduction en
dc.subject.other Thermal profiles en
dc.subject.other Trade-off curves en
dc.subject.other Computer architecture en
dc.subject.other Degradation en
dc.subject.other Programmable logic controllers en
dc.subject.other Software radio en
dc.subject.other Design en
dc.title A systematic methodology for reliability improvements on SoC-based software defined radio systems en
heal.type journalArticle en
heal.identifier.primary 10.1155/2012/784945 en
heal.identifier.secondary http://dx.doi.org/10.1155/2012/784945 en
heal.identifier.secondary 784945 en
heal.publicationDate 2012 en
heal.abstract Shrinking silicon technologies, increasing logic densities and clock frequencies, lead to a rapid elevation in power density. Increased power density results in higher onchip temperature, which creates numerous problems tightly firmed to reliability degradation. Since typical low-power design has been proved inefficient to tackle the temperature increment by itself, device architects are facing the challenge of developing new methodologies to guarantee timing, power, and thermal integrity of the chip. In this paper, we propose a thermal-aware exploration framework targeting temperature hotspots elimination through the efficient exploration of multiple microarchitecture selections over the temperature-area trade-off curve. By carefully planning at design time the resources of the initial microarchitecture that should be replicated, the proposed methodology optimizes the systems thermal profile and attens on-chip temperature under various design constraints. The introduced framework does not impose any architectural or compiler modification, whereas it is orthogonal to any other thermal-aware methodology. For evaluation purposes, we employ the software-defined radio executed onto a thermal-aware instance of LEON3 processor. Based on experimental results, we found that our methodology leads to an architecture that exhibits temperature reduction of 17 Kelvin degrees, which leads to improvement against aging phenomena about 14, with a controllable overhead in silicon area about 15, compared to the initial LEON3 instance. Copyright © 2012 Dionysios Diamantopoulos et al. en
heal.journalName VLSI Design en
dc.identifier.doi 10.1155/2012/784945 en
dc.identifier.volume 2012 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής