dc.contributor.author |
Nikolakopoulos, A |
en |
dc.contributor.author |
Karagiannakis, P |
en |
dc.contributor.author |
Galanis, A |
en |
dc.contributor.author |
Kokossis, A |
en |
dc.date.accessioned |
2014-03-01T02:07:34Z |
|
dc.date.available |
2014-03-01T02:07:34Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
15707946 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29577 |
|
dc.subject |
Biorefineries |
en |
dc.subject |
Mathematical modeling |
en |
dc.subject |
Relative residuals |
en |
dc.subject |
Water integration |
en |
dc.title |
A water saving methodology for the efficient development of biorefineries |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/B978-0-444-59519-5.50002-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/B978-0-444-59519-5.50002-2 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The paper addresses the complexities of biorefinery models in regards of minimizing water consumption, and offers paradigms of integration between mathematical programming methods and Water Pinch Analysis. In a new framework the Relative Residual Analysis (RRA) is introduced as a targeting tool of enhanced precision. Integrated water network designs are driven by RRA and accomplished through optimization of superstructure models (SM). The approach is illustrated through a water minimization problem in a real life bio-refinery, and mathematical formulations take the form of MILP and NLP models. Water targets report ∼18 % savings of use in the case of re-use, and ∼58% in the case of recycle-regeneration. © 2012 Elsevier B.V. |
en |
heal.journalName |
Computer Aided Chemical Engineering |
en |
dc.identifier.doi |
10.1016/B978-0-444-59519-5.50002-2 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.spage |
7 |
en |
dc.identifier.epage |
10 |
en |