HEAL DSpace

Accelerated subset simulation with neural networks for reliability analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Giovanis, DG en
dc.contributor.author Lagaros, ND en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T02:07:34Z
dc.date.available 2014-03-01T02:07:34Z
dc.date.issued 2012 en
dc.identifier.issn 00457825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29580
dc.subject Markov chain en
dc.subject Metropolis-Hastings en
dc.subject Neural networks en
dc.subject Reliability analysis en
dc.subject Subset simulation en
dc.subject.other Computational effort en
dc.subject.other Meta model en
dc.subject.other Metropolis algorithms en
dc.subject.other Metropolis-Hastings en
dc.subject.other Network-based en
dc.subject.other Numerical example en
dc.subject.other Probability of failure en
dc.subject.other Proposal distribution en
dc.subject.other Reliability prediction en
dc.subject.other Robust estimation en
dc.subject.other Sub-domains en
dc.subject.other Subset simulation en
dc.subject.other Algorithms en
dc.subject.other Markov processes en
dc.subject.other Reliability analysis en
dc.subject.other Neural networks en
dc.title Accelerated subset simulation with neural networks for reliability analysis en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2012.02.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2012.02.013 en
heal.publicationDate 2012 en
heal.abstract Subset Simulation (SS) is a powerful tool, simple to implement and capable of solving a broad range of reliability analysis problems. In many cases however, SS leads to reliability predictions that exhibit a large variability due to the fact that the robustness of the SS prediction depends on the selection of an adequate width of the proposal distribution when applying the modified Metropolis algorithm. In this work a Neural Network-based SS (SS-NN) methodology is proposed in which NN are effectively trained over smaller sub-domains of the total random variable space which are generated progressively at each SS level by the modified Metropolis algorithm. NN are then used as robust meta-models in order to increase the efficiency of SS by increasing significantly the samples per SS level with a minimum additional computational effort. In the numerical examples considered, it is demonstrated that the training of a sufficiently accurate NN meta-model in the context of SS simulation leads to more robust estimations of the probability of failure both in terms of mean and variance of the estimator. © 2012 Elsevier B.V. en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2012.02.013 en
dc.identifier.volume 223-224 en
dc.identifier.spage 70 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής