dc.contributor.author |
Kefalas, TD |
en |
dc.contributor.author |
Kladas, AG |
en |
dc.date.accessioned |
2014-03-01T02:07:35Z |
|
dc.date.available |
2014-03-01T02:07:35Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03321649 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29586 |
|
dc.subject |
Electromagnetic analysis |
en |
dc.subject |
Finite element methods |
en |
dc.subject |
Magnetic cores |
en |
dc.subject |
Numerical analysis |
en |
dc.subject |
Power transformers |
en |
dc.subject.other |
3-D FE analysis |
en |
dc.subject.other |
3D Finite element |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Computational tools |
en |
dc.subject.other |
Design/methodology/approach |
en |
dc.subject.other |
Distribution transformer |
en |
dc.subject.other |
Electrical steels |
en |
dc.subject.other |
Electromagnetic analysis |
en |
dc.subject.other |
Experimental analysis |
en |
dc.subject.other |
FE method |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Flux density distribution |
en |
dc.subject.other |
No-load loss |
en |
dc.subject.other |
Single valued functions |
en |
dc.subject.other |
Wound core |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Computational electromagnetics |
en |
dc.subject.other |
Cost benefit analysis |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Laminated composites |
en |
dc.subject.other |
Laminating |
en |
dc.subject.other |
Magnetic cores |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Power transformers |
en |
dc.subject.other |
Silicon steel |
en |
dc.subject.other |
Three dimensional |
en |
dc.title |
Advanced computational tools for wound core distribution transformer no-load analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1108/03321641211200653 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1108/03321641211200653 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Purpose - This paper aims to present an accurate representation of laminated wound cores with a low computational cost using 2D and 3D finite element (FE) method. Design/methodology/approach - The authors developed an anisotropy model in order to model laminated wound cores. The anisotropy model was integrated to the 2D and 3D FE method. A comparison between 2D and 3D FE techniques was carried out. FE techniques were validated by experimental analysis. Findings - In the case of no-load operation of wound core transformers both 2D and 3D FE techniques yield the same results. Computed and experimental local flux density distribution and no-load loss agree within 2 per cent to 6 per cent. Originality/value - The originality of the paper consists in the development of an anisotropy model specifically formulated for laminated wound cores, and in the effective representation of electrical steels using a composite single-valued function. By using the aforementioned techniques, the FE computational cost is minimised and the 3D FE analysis of wound cores is rendered practical. © 2012 Emerald Group Publishing Limited. All rights reserved. |
en |
heal.journalName |
COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering |
en |
dc.identifier.doi |
10.1108/03321641211200653 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
682 |
en |
dc.identifier.epage |
691 |
en |