HEAL DSpace

Aerodynamic design using the truncated Newton algorithm and the continuous adjoint approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:07:36Z
dc.date.available 2014-03-01T02:07:36Z
dc.date.issued 2012 en
dc.identifier.issn 02712091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29588
dc.subject Aerodynamic shape optimization en
dc.subject Continuous adjoint en
dc.subject Direct differentiation en
dc.subject Hessian matrix en
dc.subject Second-order sensitivity derivatives en
dc.subject Truncated Newton method en
dc.subject.other Aerodynamic shape optimization en
dc.subject.other Continuous adjoint en
dc.subject.other Direct differentiation en
dc.subject.other Hessian matrices en
dc.subject.other Second-order sensitivity en
dc.subject.other Truncated Newton method en
dc.subject.other Aerodynamics en
dc.subject.other Airfoils en
dc.subject.other Algorithms en
dc.subject.other Conjugate gradient method en
dc.subject.other Design en
dc.subject.other Euler equations en
dc.subject.other Matrix algebra en
dc.subject.other Newton-Raphson method en
dc.subject.other Shape optimization en
dc.title Aerodynamic design using the truncated Newton algorithm and the continuous adjoint approach en
heal.type journalArticle en
heal.identifier.primary 10.1002/fld.2530 en
heal.identifier.secondary http://dx.doi.org/10.1002/fld.2530 en
heal.publicationDate 2012 en
heal.abstract In this paper, the so-called 'continuous adjoint-direct approach' is used within the truncated Newton algorithm for the optimization of aerodynamic shapes, using the Euler equations. It is known that the direct differentiation (DD) of the flow equations with respect to the design variables, followed by the adjoint approach, is the best way to compute the exact matrix, for use along with the Newton optimization method. In contrast to this, in this paper, the adjoint approach followed by the DD of both the flow and adjoint equations (i.e. the other way round) is proved to be the most efficient way to compute the product of the Hessian matrix with any vector required by the truncated Newton algorithm, in which the Newton equations are solved iteratively by means of the conjugate gradient (CG) method. Using numerical experiments, it is demonstrated that just a few CG steps per Newton iteration are enough. Considering that the cost of solving either the adjoint or the DD equations is approximately equal to that of solving the flow equations, the cost per Newton iteration scales linearly with the (small) number of CG steps, rather than the (much higher, in large-scale problems) number of design variables. By doing so, the curse of dimensionality is alleviated, as shown in a number of applications related to the inverse design of ducts or cascade airfoils for inviscid flows. © 2011 John Wiley & Sons, Ltd. en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/fld.2530 en
dc.identifier.volume 68 en
dc.identifier.issue 6 en
dc.identifier.spage 724 en
dc.identifier.epage 739 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής