dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Tsatsomeros, MJ |
en |
dc.date.accessioned |
2014-03-01T02:07:37Z |
|
dc.date.available |
2014-03-01T02:07:37Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
18951074 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29597 |
|
dc.subject |
Cubic curve |
en |
dc.subject |
Eigenvalue bounds |
en |
dc.subject |
Numerical range |
en |
dc.title |
An envelope for the spectrum of a matrix |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2478/s11533-011-0111-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2478/s11533-011-0111-2 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We introduce and study an envelope-type region e{open}(A) in the complex plane that contains the eigenvalues of a given n×n complex matrix A. e{open}(A) is the intersection of an infinite number of regions defined by cubic curves. The notion and method of construction of e{open}(A) extend the notion of the numerical range of A, F(A), which is known to be an intersection of an infinite number of half-planes; as a consequence, e{open}(A) is contained in F(A) and represents an improvement in localizing the spectrum of A. © 2012 Versita Warsaw and Springer-Verlag Wien. |
en |
heal.journalName |
Central European Journal of Mathematics |
en |
dc.identifier.doi |
10.2478/s11533-011-0111-2 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
292 |
en |
dc.identifier.epage |
302 |
en |