dc.contributor.author |
Dimitriadis, SI |
en |
dc.contributor.author |
Laskaris, NA |
en |
dc.contributor.author |
Tzelepi, A |
en |
dc.contributor.author |
Economou, G |
en |
dc.date.accessioned |
2014-03-01T02:07:39Z |
|
dc.date.available |
2014-03-01T02:07:39Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00189294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29604 |
|
dc.subject |
Complex networks |
en |
dc.subject |
encephalography |
en |
dc.subject |
graph theory |
en |
dc.subject |
time series analysis |
en |
dc.subject.other |
Brain connectivity |
en |
dc.subject.other |
Cognitive task |
en |
dc.subject.other |
Complex networks |
en |
dc.subject.other |
Connectivity pattern |
en |
dc.subject.other |
EEG signals |
en |
dc.subject.other |
encephalography |
en |
dc.subject.other |
Functional connectivity |
en |
dc.subject.other |
Functional network |
en |
dc.subject.other |
Functional organization |
en |
dc.subject.other |
Neural synchrony |
en |
dc.subject.other |
Random Walk |
en |
dc.subject.other |
Relational data |
en |
dc.subject.other |
Eye movements |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
article |
en |
dc.subject.other |
brain function |
en |
dc.subject.other |
commute time |
en |
dc.subject.other |
electroencephalogram |
en |
dc.subject.other |
event related potential |
en |
dc.subject.other |
eye movement |
en |
dc.subject.other |
female |
en |
dc.subject.other |
functional brain connectivity |
en |
dc.subject.other |
human |
en |
dc.subject.other |
male |
en |
dc.subject.other |
nervous system parameters |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial Intelligence |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Brain Mapping |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Eye Movements |
en |
dc.subject.other |
Female |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Male |
en |
dc.subject.other |
Models, Neurological |
en |
dc.subject.other |
Nerve Net |
en |
dc.subject.other |
Pattern Recognition, Automated |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Signal Processing, Computer-Assisted |
en |
dc.title |
Analyzing functional brain connectivity by means of commute times: A new approach and its application to track event-related dynamics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TBME.2012.2186568 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TBME.2012.2186568 |
en |
heal.identifier.secondary |
6145618 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
There is growing interest in studying the association of functional connectivity patterns with particular cognitive tasks. The ability of graphs to encapsulate relational data has been exploited in many related studies, where functional networks (sketched by different neural synchrony estimators) are characterized by a rich repertoire of graph-related metrics. We introduce commute times (CTs) as an alternative way to capture the true interplay between the nodes of a functional connectivity graph (FCG). CT is a measure of the time taken for a random walk to setout and return between a pair of nodes on a graph. Its computation is considered here as a robust and accurate integration, over the FCG, of the individual pairwise measurements of functional coupling. To demonstrate the benefits from our approach, we attempted the characterization of time evolving connectivity patterns derived from EEG signals recorded while the subject was engaged in an eye-movement task. With respect to standard ways, which are currently employed to characterize connectivity, an improved detection of event-related dynamical changes is noticeable. CTs appear to be a promising technique for deriving temporal fingerprints of the brains dynamic functional organization. © 1964-2012 IEEE. |
en |
heal.journalName |
IEEE Transactions on Biomedical Engineering |
en |
dc.identifier.doi |
10.1109/TBME.2012.2186568 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1302 |
en |
dc.identifier.epage |
1309 |
en |