dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T02:07:49Z |
|
dc.date.available |
2014-03-01T02:07:49Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
1615147X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29610 |
|
dc.subject |
Design codes |
en |
dc.subject |
Finite element simulations |
en |
dc.subject |
Metaheuristics |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Overhead cranes |
en |
dc.subject.other |
Critical assessment |
en |
dc.subject.other |
Design codes |
en |
dc.subject.other |
Differential Evolution |
en |
dc.subject.other |
Discretizations |
en |
dc.subject.other |
Finite element simulations |
en |
dc.subject.other |
Harmony search |
en |
dc.subject.other |
Meta heuristics |
en |
dc.subject.other |
Metaheuristic optimization |
en |
dc.subject.other |
Number of degrees of freedom |
en |
dc.subject.other |
Optimization procedures |
en |
dc.subject.other |
Optimum designs |
en |
dc.subject.other |
Overhead crane |
en |
dc.subject.other |
Prediction schemes |
en |
dc.subject.other |
Structural response |
en |
dc.subject.other |
Bridge cranes |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Gantry cranes |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Soft computing |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Structural design |
en |
dc.title |
Applied soft computing for optimum design of structures |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00158-011-0741-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00158-011-0741-9 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural network based prediction scheme of the structural response, required to assess the quality of each candidate design during the optimization procedure, is proposed. The proposed methodology is applied to an overhead crane structure using different finite element simulations corresponding to a solid discretization as well as mixed discretizations with shell-solid and beam-solid elements. The number of degrees of freedom (dof) resulted for the simulation of the structural response varies in the range of 60,000 to 1,400,000 dof leading to highly computational intensive problems. © 2012 Springer-Verlag. |
en |
heal.journalName |
Structural and Multidisciplinary Optimization |
en |
dc.identifier.doi |
10.1007/s00158-011-0741-9 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
787 |
en |
dc.identifier.epage |
799 |
en |