HEAL DSpace

Artificial compressibility 3-D Navier-Stokes solver for unsteady incompressible flows with hybrid grids

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vrahliotis, S en
dc.contributor.author Pappou, T en
dc.contributor.author Tsangaris, S en
dc.date.accessioned 2014-03-01T02:07:51Z
dc.date.available 2014-03-01T02:07:51Z
dc.date.issued 2012 en
dc.identifier.issn 19942060 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29613
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84862014772&partnerID=40&md5=0d47868a06558ec725bf118dbd3fd08e en
dc.subject Artificial compressibility en
dc.subject Hybrid mesh en
dc.subject Incompressible flow en
dc.title Artificial compressibility 3-D Navier-Stokes solver for unsteady incompressible flows with hybrid grids en
heal.type journalArticle en
heal.publicationDate 2012 en
heal.abstract An unsteady incompressible numerical method for the solution of Navier-Stokes equations is presented. The finite volume solver adopts the method of artificial compressibility, using an implicit dual time stepping scheme for time accuracy. The 2D solver operates on general hybrid meshes containing triangles and quadrilaterals, while the 3D solver operates on hybrid meshes containing tetrahedra, pyramids, prisms and hexahedra. The developed algorithms for spatial discretization and time integration are mesh transparent. An upwind spatial discretization scheme is used for the convective terms and a central scheme for the diffusive terms. Efficient calculation of flow fluxes is implemented in an edge-wise fashion. A new combined method for efficient and accurate evaluation of variable gradients is achieved by using an averaging technique and by avoiding multiple spatial integration of the same element of the mesh. The results obtained agree well with numerical solutions obtained by other researchers. en
heal.journalName Engineering Applications of Computational Fluid Mechanics en
dc.identifier.volume 6 en
dc.identifier.issue 2 en
dc.identifier.spage 248 en
dc.identifier.epage 270 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής