dc.contributor.author |
Vassilaki, DI |
en |
dc.contributor.author |
Ioannidis, CC |
en |
dc.contributor.author |
Stamos, AA |
en |
dc.date.accessioned |
2014-03-01T02:07:52Z |
|
dc.date.available |
2014-03-01T02:07:52Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
0031868X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29620 |
|
dc.subject |
Accuracy |
en |
dc.subject |
Free-form linear features |
en |
dc.subject |
Georeferencing |
en |
dc.subject |
Iterative closest point |
en |
dc.subject |
Matching |
en |
dc.subject |
Multisensor and multitemporal |
en |
dc.title |
Automatic ICP-Based Global Matching of Free-Form Linear Features |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1477-9730.2012.00692.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1477-9730.2012.00692.x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The geometric exploitation of linear features has been investigated in various remote sensing and geospatial problems. This paper introduces a novel and general method based on the iterative closest point (ICP) algorithm for the global matching of heterogeneous free-form linear features of the same (2D-2D, 3D-3D), or different, (2D-3D) dimensionality. No constraints are imposed on either the transformation, the projection type or the geometric nature of the features. The method assumes no prior knowledge of the relative position of the features, or of point correspondences, and is tested with various simulated and real-world heterogeneous data. © 2012 The Authors. The Photogrammetric Record © 2012 The Remote Sensing and Photogrammetry Society and Blackwell Publishing Ltd. |
en |
heal.journalName |
Photogrammetric Record |
en |
dc.identifier.doi |
10.1111/j.1477-9730.2012.00692.x |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
139 |
en |
dc.identifier.spage |
311 |
en |
dc.identifier.epage |
329 |
en |