HEAL DSpace

Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fouskakis, D en
dc.date.accessioned 2014-03-01T02:07:57Z
dc.date.available 2014-03-01T02:07:57Z
dc.date.issued 2012 en
dc.identifier.issn 03772217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29624
dc.subject Bayesian variable selection en
dc.subject Genetic algorithm en
dc.subject Laplace approximation en
dc.subject Simulated annealing en
dc.subject Stochastic optimization en
dc.subject Tabu search en
dc.subject.other Bayesian variable selection en
dc.subject.other Computational costs en
dc.subject.other Criterion functions en
dc.subject.other Generalized linear model en
dc.subject.other Laplace approximation en
dc.subject.other Logistic regression models en
dc.subject.other Model composition en
dc.subject.other Model probabilities en
dc.subject.other Model search en
dc.subject.other Stochastic optimization algorithm en
dc.subject.other Stochastic optimization methods en
dc.subject.other Stochastic optimizations en
dc.subject.other Approximation algorithms en
dc.subject.other Computer simulation en
dc.subject.other Laplace transforms en
dc.subject.other Logistics en
dc.subject.other Regression analysis en
dc.subject.other Simulated annealing en
dc.subject.other Stochastic models en
dc.subject.other Stochastic systems en
dc.subject.other Tabu search en
dc.subject.other Genetic algorithms en
dc.title Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ejor.2012.01.040 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ejor.2012.01.040 en
heal.publicationDate 2012 en
heal.abstract In this paper the usage of a stochastic optimization algorithm as a model search tool is proposed for the Bayesian variable selection problem in generalized linear models. Combining aspects of three well known stochastic optimization algorithms, namely, simulated annealing, genetic algorithm and tabu search, a powerful model search algorithm is produced. After choosing suitable priors, the posterior model probability is used as a criterion function for the algorithm; in cases when it is not analytically tractable Laplace approximation is used. The proposed algorithm is illustrated on normal linear and logistic regression models, for simulated and real-life examples, and it is shown that, with a very low computational cost, it achieves improved performance when compared with popular MCMC algorithms, such as the MCMC model composition, as well as with ""vanilla"" versions of simulated annealing, genetic algorithm and tabu search. © 2012 Elsevier B.V. All rights reserved. en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/j.ejor.2012.01.040 en
dc.identifier.volume 220 en
dc.identifier.issue 2 en
dc.identifier.spage 414 en
dc.identifier.epage 422 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής