dc.contributor.author | Stavropoulou, EA | en |
dc.contributor.author | Dafalias, YF | en |
dc.contributor.author | Sokolis, DP | en |
dc.date.accessioned | 2014-03-01T02:08:07Z | |
dc.date.available | 2014-03-01T02:08:07Z | |
dc.date.issued | 2012 | en |
dc.identifier.issn | 09544119 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29628 | |
dc.subject | circumferential smooth muscle | en |
dc.subject | Constitutive model | en |
dc.subject | histology | en |
dc.subject | longitudinal smooth muscle | en |
dc.subject | mucosa-submucosa | en |
dc.subject | striated muscle | en |
dc.subject | uniaxial tensile-testing | en |
dc.subject.other | Biomechanical behavior | en |
dc.subject.other | Collagen content | en |
dc.subject.other | Longitudinal arrangement | en |
dc.subject.other | Material parameter | en |
dc.subject.other | mucosa-submucosa | en |
dc.subject.other | Muscle layers | en |
dc.subject.other | Oblique arrangement | en |
dc.subject.other | Orthogonal axis | en |
dc.subject.other | Smooth muscles | en |
dc.subject.other | Strain energy functions | en |
dc.subject.other | Striated muscles | en |
dc.subject.other | Tissue response | en |
dc.subject.other | Transition zones | en |
dc.subject.other | Tubular specimens | en |
dc.subject.other | uniaxial tensile-testing | en |
dc.subject.other | Uniaxial tensions | en |
dc.subject.other | Zero-stress state | en |
dc.subject.other | Biomechanics | en |
dc.subject.other | Collagen | en |
dc.subject.other | Computerized tomography | en |
dc.subject.other | Constitutive models | en |
dc.subject.other | Histology | en |
dc.subject.other | Microscopic examination | en |
dc.subject.other | Tensile testing | en |
dc.subject.other | Two dimensional | en |
dc.subject.other | Muscle | en |
dc.subject.other | collagen | en |
dc.subject.other | elastin | en |
dc.subject.other | algorithm | en |
dc.subject.other | animal | en |
dc.subject.other | anisotropy | en |
dc.subject.other | article | en |
dc.subject.other | biological model | en |
dc.subject.other | computer simulation | en |
dc.subject.other | cytology | en |
dc.subject.other | esophagus | en |
dc.subject.other | male | en |
dc.subject.other | mechanical stress | en |
dc.subject.other | mucosa | en |
dc.subject.other | physiology | en |
dc.subject.other | smooth muscle | en |
dc.subject.other | swine | en |
dc.subject.other | tensile strength | en |
dc.subject.other | Young modulus | en |
dc.subject.other | Algorithms | en |
dc.subject.other | Animals | en |
dc.subject.other | Anisotropy | en |
dc.subject.other | Collagen | en |
dc.subject.other | Computer Simulation | en |
dc.subject.other | Elastic Modulus | en |
dc.subject.other | Elastin | en |
dc.subject.other | Esophagus | en |
dc.subject.other | Male | en |
dc.subject.other | Models, Biological | en |
dc.subject.other | Mucous Membrane | en |
dc.subject.other | Muscle, Smooth | en |
dc.subject.other | Stress, Mechanical | en |
dc.subject.other | Sus scrofa | en |
dc.subject.other | Tensile Strength | en |
dc.title | Biomechanical behavior and histological organization of the three-layered passive esophagus as a function of topography | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1177/0954411912444073 | en |
heal.identifier.secondary | http://dx.doi.org/10.1177/0954411912444073 | en |
heal.publicationDate | 2012 | en |
heal.abstract | The zero-stress state of the mucosa-submucosa and two muscle esophageal layers has been delineated, but their multi-axial response has not, because muscle dissection may not leave tubular specimens intact for inflation/extension testing. The histomechanical behavior of the three-layered porcine esophagus was investigated in this study, through light microscopic examination and uniaxial tension, with two-dimensional strain measurement in pairs of orthogonally oriented specimens. The two-dimensional Fung-type strain-energy function described suitably the pseudo-elastic tissue response, affording faithful simulations to our data. Differences in the scleroprotein content and configuration were identified as a function of layer, topography, and orientation, substantiating the macromechanical differences found. In view of the failure and optimized material parameters, the mucosa-submucosa was stronger and stiffer than muscle, associating it with a higher collagen content. A notable topographical distribution was apparent, with data for the abdominal region differentiated from that for the cervical region, owing to the existence of inner muscle with a circumferential arrangement and of outer muscle with a longitudinal arrangement in the former region, and of both muscle layers with oblique arrangement in the latter region, with thoracic esophagus being a transition zone. Tissue from the mucosa-submucosa was stronger and stiffer longitudinally, relating with a preferential collagen reinforcement along that axis, but more extensible in the orthogonal axis. © IMechE 2012. | en |
heal.journalName | Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | en |
dc.identifier.doi | 10.1177/0954411912444073 | en |
dc.identifier.volume | 226 | en |
dc.identifier.issue | 6 | en |
dc.identifier.spage | 477 | en |
dc.identifier.epage | 490 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |