dc.contributor.author |
Triantafyllou, SP |
en |
dc.contributor.author |
Koumousis, VK |
en |
dc.date.accessioned |
2014-03-01T02:08:16Z |
|
dc.date.available |
2014-03-01T02:08:16Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
07339399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29632 |
|
dc.subject |
Bouc-Wen |
en |
dc.subject |
Finite element |
en |
dc.subject |
Hysteresis |
en |
dc.subject |
Inelastic analysis |
en |
dc.subject |
Plane stress |
en |
dc.subject.other |
Bouc-Wen |
en |
dc.subject.other |
Bouc-Wen hysteretic model |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Constitutive relations |
en |
dc.subject.other |
Differential equation solvers |
en |
dc.subject.other |
Elasto-plastic |
en |
dc.subject.other |
Equilibrium equation |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Hysteretic behavior |
en |
dc.subject.other |
Inelastic analysis |
en |
dc.subject.other |
Nonlinear constitutive behavior |
en |
dc.subject.other |
Plane stress |
en |
dc.subject.other |
Predictor corrector |
en |
dc.subject.other |
Solution approach |
en |
dc.subject.other |
Solution methods |
en |
dc.subject.other |
Step-by-step |
en |
dc.subject.other |
Stiffness degradation |
en |
dc.subject.other |
Stiffness matrices |
en |
dc.subject.other |
Strength deterioration |
en |
dc.subject.other |
Stress-strain |
en |
dc.subject.other |
Triangular elements |
en |
dc.subject.other |
Two-dimensional structures |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Stiffness matrix |
en |
dc.subject.other |
Hysteresis |
en |
dc.subject.other |
constitutive equation |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
equilibrium |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
hysteresis |
en |
dc.subject.other |
stiffness |
en |
dc.subject.other |
stress analysis |
en |
dc.subject.other |
stress-strain relationship |
en |
dc.subject.other |
two-dimensional modeling |
en |
dc.title |
Bouc-Wen Type Hysteretic Plane Stress Element |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)EM.1943-7889.0000332 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000332 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this work, a plane-stress element is proposed for the elastoplastic dynamic analysis of two-dimensional structures exhibiting hysteretic behavior. The constant-strain triangular element formulation for the elastic case is modified by introducing the Bouc-Wen hysteretic model, properly defined in the 2D stress-strain space. Solutions are obtained by simultaneously solving two sets of governing equations, namely the global equilibrium equations and the local constitutive equations, using a predictor-corrector differential equation solver. In following the proposed method, the linearization of the constitutive relations usually performed in step-by-step solution approaches is avoided. The proposed element is capable of modeling cyclic induced phenomena such as stiffness degradation and strength deterioration. Furthermore, the solution method implemented improves the accuracy of the results without increasing the computational cost of the analysis. Examples are presented which demonstrate the efficiency of the proposed approach. The method can be extended to other types of finite elements by properly incorporating the nonlinear constitutive behavior into their stiffness matrices. © 2012 American Society of Civil Engineers. |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)EM.1943-7889.0000332 |
en |
dc.identifier.volume |
138 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
235 |
en |
dc.identifier.epage |
246 |
en |