dc.contributor.author |
Andrianopoulos, NP |
en |
dc.contributor.author |
Manolopoulos, VM |
en |
dc.date.accessioned |
2014-03-01T02:08:19Z |
|
dc.date.available |
2014-03-01T02:08:19Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00207403 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29636 |
|
dc.subject |
Bridgman experiments |
en |
dc.subject |
Constitutive equations |
en |
dc.subject |
Coulomb criterion |
en |
dc.subject |
DruckerPrager criterion |
en |
dc.subject |
Non-linear elasticity |
en |
dc.subject |
T-criterion |
en |
dc.subject.other |
Bridgman |
en |
dc.subject.other |
Coulomb criterion |
en |
dc.subject.other |
Deviatoric strain |
en |
dc.subject.other |
Drucker-Prager |
en |
dc.subject.other |
Ductile materials |
en |
dc.subject.other |
Elastic materials |
en |
dc.subject.other |
Elastic strain energy |
en |
dc.subject.other |
Failure behaviors |
en |
dc.subject.other |
Failure surface |
en |
dc.subject.other |
Nonlinear elasticity |
en |
dc.subject.other |
Stress space |
en |
dc.subject.other |
T-criterion |
en |
dc.subject.other |
Universal criterion |
en |
dc.subject.other |
Constitutive equations |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Experiments |
en |
dc.subject.other |
Strain energy |
en |
dc.subject.other |
Materials |
en |
dc.title |
Can Coulomb criterion be generalized in case of ductile materials? An application to Bridgman experiments |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijmecsci.2011.11.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijmecsci.2011.11.003 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The failure behavior of isotropic non-linear elastic materials is macroscopically studied in terms of elastic strain energy density generalizing the Coulomb criterion. This generalization is based on a rigorous mathematical substrate developed on the principle of conservation of the total elastic strain energy. In the general case of loading the behavior of a material is described with regard to the secant elastic moduli depending on both first strain and second deviatoric strain invariants. This dependence enlightens, in physical terms, the different reaction of materials in normal and shear stresses. Besides, these two moduli establish two constitutive equations for the complete description of any material, instead of the usual one. A theoretical application is given and the failure surfaces which are obtained in stress space are being commented. Predictions obtained in tension of steel under pressure from Bridgmans experiments and some of his observations for the failure behavior of steels are explained on the existence of a universal criterion with the present approach. © 2011 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
International Journal of Mechanical Sciences |
en |
dc.identifier.doi |
10.1016/j.ijmecsci.2011.11.003 |
en |
dc.identifier.volume |
54 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
241 |
en |
dc.identifier.epage |
248 |
en |