HEAL DSpace

Capillary flow of low-density polyethylene

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ansari, M en
dc.contributor.author Zisis, T en
dc.contributor.author Hatzikiriakos, SG en
dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T02:08:20Z
dc.date.available 2014-03-01T02:08:20Z
dc.date.issued 2012 en
dc.identifier.issn 00323888 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29639
dc.subject.other Bagley correction en
dc.subject.other Capillary dies en
dc.subject.other Effect of pressure en
dc.subject.other Excess pressure en
dc.subject.other Experimental data en
dc.subject.other L/D ratio en
dc.subject.other Nonisothermal en
dc.subject.other Pressure dependence en
dc.subject.other Relaxation modulus en
dc.subject.other Rheological characterization en
dc.subject.other Shear rates en
dc.subject.other Slip effects en
dc.subject.other Viscous models en
dc.subject.other Capillarity en
dc.subject.other Capillary flow en
dc.subject.other Polyethylenes en
dc.subject.other Thermoplastics en
dc.subject.other Pressure effects en
dc.title Capillary flow of low-density polyethylene en
heal.type journalArticle en
heal.identifier.primary 10.1002/pen.22130 en
heal.identifier.secondary http://dx.doi.org/10.1002/pen.22130 en
heal.publicationDate 2012 en
heal.abstract The capillary flow of a commercial low-density polyethylene (LDPE) melt was studied both experimentally and numerically. The excess pressure drop due to entry (Bagley correction), the compressibility, the effect of pressure on viscosity, and the possible slip effects on the capillary data analysis have been examined. Using a series of capillary dies having different diameters, D, and length-to-diameter L/D ratios, a full rheological characterization has been carried out, and the experimental data have been fitted both with a viscous model (Carreau-Yasuda) and a viscoelastic one (the Kaye-Bernstein, Kearsley, Zapas/Papanastasiou, Scriven, Macosko, or K-BKZ/PSM model). Particular emphasis has been given on the pressure-dependence of viscosity, with a pressure-dependent coefficient βp. For the viscous model, the viscosity is a function of both temperature and pressure. For the viscoelastic K-BKZ model, the time erature shifting concept has been used for the non-isothermal calculations, while the time-pressure shifting concept has been used to shift the relaxation moduli for the pressure-dependence effect. It was found that only the viscoelastic simulations were capable of reproducing the experimental data well, while any viscous modeling always underestimates the pressures, especially at the higher apparent shear rates and L/D ratios. © 2012 Society of Plastics Engineers. en
heal.journalName Polymer Engineering and Science en
dc.identifier.doi 10.1002/pen.22130 en
dc.identifier.volume 52 en
dc.identifier.issue 3 en
dc.identifier.spage 649 en
dc.identifier.epage 662 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής