HEAL DSpace

Computational singular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical kinetics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Debusschere, BJ en
dc.contributor.author Marzouk, YM en
dc.contributor.author Najm, HN en
dc.contributor.author Rhoads, B en
dc.contributor.author Goussis, DA en
dc.contributor.author Valorani, M en
dc.date.accessioned 2014-03-01T02:08:33Z
dc.date.available 2014-03-01T02:08:33Z
dc.date.issued 2012 en
dc.identifier.issn 13647830 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29662
dc.subject chemical kinetics en
dc.subject computational singular perturbation en
dc.subject kd-trees en
dc.subject nearest neighbors en
dc.subject non-parametric regression en
dc.subject slow manifold en
dc.subject.other computational singular perturbation en
dc.subject.other K-d tree en
dc.subject.other Nearest neighbors en
dc.subject.other Non-parametric regression en
dc.subject.other Slow manifolds en
dc.subject.other Integration en
dc.subject.other Numerical methods en
dc.subject.other Reaction kinetics en
dc.subject.other Vector spaces en
dc.subject.other Kinetics en
dc.title Computational singular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical kinetics en
heal.type journalArticle en
heal.identifier.primary 10.1080/13647830.2011.596575 en
heal.identifier.secondary http://dx.doi.org/10.1080/13647830.2011.596575 en
heal.publicationDate 2012 en
heal.abstract This paper presents a novel tabulation strategy for the adaptive numerical integration of chemical kinetics using the computational singular perturbation (CSP) method. The strategy stores and reuses CSP quantities required to filter out fast dissipative processes, resulting in a non-stiff chemical source term. In particular, non-parametric regression on low-dimensional slow invariant manifolds (SIMs) in the chemical state space is used to approximate the CSP vectors spanning the fast chemical subspace and the associated fast chemical time-scales. The relevant manifold and its dimension varies depending on the local number of exhausted modes at every location in the chemical state space. Multiple manifolds are therefore tabulated, corresponding to different numbers of exhausted modes (dimensions) and associated radical species. Non-parametric representations are inherently adaptive, and rely on efficient approximate-nearest-neighbor queries. As the CSP information is only a function of the non-radical species in the system and has relatively small gradients in the chemical state space, tabulation occurs in a lower-dimensional state space and at a relatively coarse level, thereby improving scalability to larger chemical mechanisms. The approach is demonstrated on the simulation of homogeneous constant pressure H2-air and CH4-air ignition, over a range of initial conditions. For CH4-air, results are shown that outperform direct implicit integration of the stiff chemical kinetics while maintaining good accuracy. © 2012 Copyright Taylor and Francis Group, LLC. en
heal.journalName Combustion Theory and Modelling en
dc.identifier.doi 10.1080/13647830.2011.596575 en
dc.identifier.volume 16 en
dc.identifier.issue 1 en
dc.identifier.spage 173 en
dc.identifier.epage 198 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής