HEAL DSpace

Convergence analysis and oscillations in the method of fictitious sources applied to dielectric scattering problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Valagiannopoulos, CA en
dc.contributor.author Tsitsas, NL en
dc.contributor.author Fikioris, G en
dc.date.accessioned 2014-03-01T02:08:34Z
dc.date.available 2014-03-01T02:08:34Z
dc.date.issued 2012 en
dc.identifier.issn 10847529 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29670
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84855374712&partnerID=40&md5=f9846adaac3c5f382c3d8766d54238b1 en
dc.subject.other Asymptotic expressions en
dc.subject.other Asymptotic formula en
dc.subject.other Convergence analysis en
dc.subject.other Current filaments en
dc.subject.other Dielectric cylinder en
dc.subject.other Dielectric scattering en
dc.subject.other Fictitious sources en
dc.subject.other Ill-conditioning en
dc.subject.other Large N en
dc.subject.other Scattering problems en
dc.subject.other Wave scattering en
dc.subject.other Dielectric devices en
dc.subject.other Scattering en
dc.title Convergence analysis and oscillations in the method of fictitious sources applied to dielectric scattering problems en
heal.type journalArticle en
heal.publicationDate 2012 en
heal.abstract Several wave scattering phenomena in optics are modeled by the method of fictitious sources (MFS). Despite its interesting features, the effectiveness of the MFS and its applicability are restricted by open issues, including the placement of the fictitious sources (FS) and the fields' convergence. Concerning these issues, we investigate here the MFS convergence and study oscillations in its solutions for a representative scattering problem of a dielectric cylinder illuminated by a current filament. It is shown analytically that, when the FS radii lie in the interior and exterior of two disks with certain critical radii, the MFS currents' series diverge while the respective fields converge, as the FS number N tends to infinity. Asymptotic formulas of the divergent currents are established, exhibiting that they increase exponentially with N and oscillate. Numerical simulations are included, demonstrating that (i) the divergent currents oscillate for sufficiently large N, (ii) the oscillating values are fairly approximated by the derived asymptotic expressions, and (iii) these oscillations are inherent in MFS and are not due to illconditioning; hence, they cannot be overcome by improving the hardware or software. The possibility of obtaining convergent and correct fields from divergent intermediary currents may lead to a potential significant advance of the applicability of the MFS. © 2011 Optical Society of America. en
heal.journalName Journal of the Optical Society of America A: Optics and Image Science, and Vision en
dc.identifier.volume 29 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 10 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής