dc.contributor.author |
Raftoyiannis, IG |
en |
dc.contributor.author |
Michaltsos, GT |
en |
dc.date.accessioned |
2014-03-01T02:08:35Z |
|
dc.date.available |
2014-03-01T02:08:35Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02194554 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29677 |
|
dc.subject |
Cable-stayed bridges |
en |
dc.subject |
curved beams |
en |
dc.subject |
dynamic stability |
en |
dc.subject |
dynamic structural analysis |
en |
dc.subject |
time-depended loading |
en |
dc.subject.other |
Cable-supported bridges |
en |
dc.subject.other |
Curved beams |
en |
dc.subject.other |
Dynamic structural analysis |
en |
dc.subject.other |
External loads |
en |
dc.subject.other |
Long span |
en |
dc.subject.other |
Numerical example |
en |
dc.subject.other |
Static and dynamic analysis |
en |
dc.subject.other |
Tensile forces |
en |
dc.subject.other |
Theoretical formulation |
en |
dc.subject.other |
Three-dimensional (3D) analysis |
en |
dc.subject.other |
Box girder bridges |
en |
dc.subject.other |
Cable stayed bridges |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Loading |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Cables |
en |
dc.title |
Curved-in-plane cable-stayed bridges: A mathematical model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0219455412500113 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0219455412500113 |
en |
heal.identifier.secondary |
1250011 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A mathematical model suitable for static and dynamic analyses of curved-in-plane cable-stayed bridges is proposed. By expressing the tensile forces of the cables in relation to the deck and pylon deformations, the problem is reduced to the solution of a beam curved-in-plane that is subjected to the usual permanent and external loads and to the tensile forces of the cables, the latter being functions of the deformation of the beam. The theoretical formulation presented is based on a continuum approach, which is suitable for the three-dimensional (3D) analysis of long span cable-supported bridges. Numerical examples will be analyzed to illustrate the applicability of the proposed approach. © 2012 World Scientific Publishing Company. |
en |
heal.journalName |
International Journal of Structural Stability and Dynamics |
en |
dc.identifier.doi |
10.1142/S0219455412500113 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
3 |
en |