dc.contributor.author |
Tsirigotis, L |
en |
dc.contributor.author |
Vlahogianni, EI |
en |
dc.contributor.author |
Karlaftis, MG |
en |
dc.date.accessioned |
2014-03-01T02:08:41Z |
|
dc.date.available |
2014-03-01T02:08:41Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
18688659 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29704 |
|
dc.subject |
Exogenous variables |
en |
dc.subject |
Short-term speed forecasting |
en |
dc.subject |
Time-series analysis |
en |
dc.subject.other |
Bayesian estimations |
en |
dc.subject.other |
Exogenous variables |
en |
dc.subject.other |
Forecasting models |
en |
dc.subject.other |
Prediction performance |
en |
dc.subject.other |
Traffic flow characteristics |
en |
dc.subject.other |
Traffic Forecasting |
en |
dc.subject.other |
Traffic mix |
en |
dc.subject.other |
Traffic speed |
en |
dc.subject.other |
Vector autoregressive moving average model |
en |
dc.subject.other |
Bayesian networks |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Forecasting |
en |
dc.title |
Does Information on Weather Affect the Performance of Short-Term Traffic Forecasting Models? |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s13177-011-0037-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s13177-011-0037-x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Although weather, traffic mix and speed variability across lanes are largely considered as significant determinants of traffic flow characteristics on freeways, they have not been incorporated into short-term traffic forecasting models. We evaluate the effects of weather and traffic mix on the predictability of traffic speed using several vector autoregressive moving average models with exogenous variables. Results indicate that including exogenous variables in the forecasting models only marginally improves their prediction performance, while modeling innovations such as Vector and Bayesian estimation improves the models significantly. © 2011 Springer Science+Business Media, LLC. |
en |
heal.journalName |
International Journal of Intelligent Transportation Systems Research |
en |
dc.identifier.doi |
10.1007/s13177-011-0037-x |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
10 |
en |