HEAL DSpace

Efficient coarse simulation of a growing avascular tumor

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavousanakis, ME en
dc.contributor.author Liu, P en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Lowengrub, J en
dc.contributor.author Kevrekidis, IG en
dc.date.accessioned 2014-03-01T02:08:43Z
dc.date.available 2014-03-01T02:08:43Z
dc.date.issued 2012 en
dc.identifier.issn 15393755 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29721
dc.subject.other Cancer cells en
dc.subject.other Cell-cell interaction en
dc.subject.other Computational approach en
dc.subject.other Computational demands en
dc.subject.other Computational savings en
dc.subject.other Continuum model en
dc.subject.other Discrete stochastic models en
dc.subject.other Early stage tumors en
dc.subject.other Equation-Free en
dc.subject.other Execution time en
dc.subject.other Individual cells en
dc.subject.other Individual-based en
dc.subject.other Integration scheme en
dc.subject.other Long time behavior en
dc.subject.other Macroscopic equation en
dc.subject.other Microscopic models en
dc.subject.other Predictive power en
dc.subject.other Projection schemes en
dc.subject.other Proof of principles en
dc.subject.other Radial symmetrys en
dc.subject.other Short time intervals en
dc.subject.other Signaling process en
dc.subject.other Time-scales en
dc.subject.other Tumor progressions en
dc.subject.other Upscaling en
dc.subject.other Cell culture en
dc.subject.other Cell proliferation en
dc.subject.other Cells en
dc.subject.other Cellular automata en
dc.subject.other Continuum mechanics en
dc.subject.other Integration en
dc.subject.other Tumors en
dc.subject.other Computer simulation en
dc.title Efficient coarse simulation of a growing avascular tumor en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevE.85.031912 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevE.85.031912 en
heal.identifier.secondary 031912 en
heal.publicationDate 2012 en
heal.abstract The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called ""equation-free"" framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. © 2012 American Physical Society. en
heal.journalName Physical Review E - Statistical, Nonlinear, and Soft Matter Physics en
dc.identifier.doi 10.1103/PhysRevE.85.031912 en
dc.identifier.volume 85 en
dc.identifier.issue 3 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής