dc.contributor.author |
Axelos, N |
en |
dc.contributor.author |
Pekmestzi, K |
en |
dc.contributor.author |
Gizopoulos, D |
en |
dc.date.accessioned |
2014-03-01T02:08:43Z |
|
dc.date.available |
2014-03-01T02:08:43Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
10638210 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29722 |
|
dc.subject |
Cache |
en |
dc.subject |
fault tolerance |
en |
dc.subject |
memory |
en |
dc.subject |
redundancy |
en |
dc.subject |
reliability |
en |
dc.subject |
repair |
en |
dc.subject.other |
Architectural levels |
en |
dc.subject.other |
Cache |
en |
dc.subject.other |
Embedded memories |
en |
dc.subject.other |
Low area |
en |
dc.subject.other |
Mathematical probability |
en |
dc.subject.other |
Memory design |
en |
dc.subject.other |
Memory repair |
en |
dc.subject.other |
Nanometer technology |
en |
dc.subject.other |
Reliable operation |
en |
dc.subject.other |
Repairability |
en |
dc.subject.other |
Scalable memory |
en |
dc.subject.other |
Static-power dissipation |
en |
dc.subject.other |
Suitable solutions |
en |
dc.subject.other |
Synergistic action |
en |
dc.subject.other |
Technology nodes |
en |
dc.subject.other |
Yield loss |
en |
dc.subject.other |
Data storage equipment |
en |
dc.subject.other |
Fault tolerance |
en |
dc.subject.other |
Memory architecture |
en |
dc.subject.other |
Profitability |
en |
dc.subject.other |
Redundancy |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Repair |
en |
dc.subject.other |
Cache memory |
en |
dc.title |
Efficient memory repair using cache-based redundancy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TVLSI.2011.2170593 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TVLSI.2011.2170593 |
en |
heal.identifier.secondary |
6069833 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In modern processes, conventional defect density and variability related yield losses are a major concern for the aggressive memory designs in integrated circuits. Synergistic action for memory repair at the circuit and architectural level is essential to maintain the yields and profitability of past technology nodes. In this paper, we propose a scalable memory repair architecture that utilizes a set of direct-mapped cache banks to replace faulty words. Statistical and mathematical probability analysis shows that the proposed scheme achieves high repairability levels with low area and static power dissipation overheads, the latter being a dominant issue in nanometer technologies. It is therefore a suitable solution along with other mature memory repair techniques, to enhance the overall repairability features and guarantee the correct and reliable operation of embedded memories in nanometer technologies. © 1993-2012 IEEE. |
en |
heal.journalName |
IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
en |
dc.identifier.doi |
10.1109/TVLSI.2011.2170593 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2278 |
en |
dc.identifier.epage |
2288 |
en |