HEAL DSpace

Efficient methods for selfish network design

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fotakis, D en
dc.contributor.author Kaporis, AC en
dc.contributor.author Spirakis, PG en
dc.date.accessioned 2014-03-01T02:08:43Z
dc.date.available 2014-03-01T02:08:43Z
dc.date.issued 2012 en
dc.identifier.issn 03043975 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29723
dc.subject.other Braess's Paradox en
dc.subject.other Equilibrium flow en
dc.subject.other Feasible solution en
dc.subject.other Flow byes en
dc.subject.other Linear programs en
dc.subject.other Nash equilibria en
dc.subject.other Network design en
dc.subject.other Optimal flows en
dc.subject.other Optimal traffic allocation en
dc.subject.other Polylogarithmic en
dc.subject.other Polynomial-time en
dc.subject.other Polynomial-time algorithms en
dc.subject.other Probabilistic methods en
dc.subject.other Quadratic programs en
dc.subject.other Real-world networks en
dc.subject.other Sub-network en
dc.subject.other Approximation algorithms en
dc.subject.other Computational complexity en
dc.subject.other Polynomial approximation en
dc.subject.other Optimization en
dc.title Efficient methods for selfish network design en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.tcs.2012.04.033 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.tcs.2012.04.033 en
heal.publicationDate 2012 en
heal.abstract Intuitively, Braess's paradox states that destroying a part of a network may improve the common latency of selfish flows at Nash equilibrium. Such a paradox is a pervasive phenomenon in real-world networks. Any administrator who wants to improve equilibrium delays in selfish networks, is facing some basic questions: Is the network paradox-ridden?How can we delete some edges to optimize equilibrium flow delays?How can we modify edge latencies to optimize equilibrium flow delays? Unfortunately, such questions lead to NP-hard problems in general. In this work, we impose some natural restrictions on our networks, e.g. we assume strictly increasing linear latencies. Our target is to formulate efficient algorithms for the three questions above. We manage to provide: A polynomial-time algorithm that decides if a network is paradox-ridden, when latencies are linear and strictly increasing.A reduction of the problem of deciding if a network with (arbitrary) linear latencies is paradox-ridden to the problem of generating all optimal basic feasible solutions of a Linear Program that describes the optimal traffic allocations to the edges with constant latency.An algorithm for finding a subnetwork that is almost optimal wrt equilibrium latency. Our algorithm is subexponential when the number of paths is polynomial and each path is of polylogarithmic length.A polynomial-time algorithm for the problem of finding the best subnetwork which outperforms any known approximation for the case of strictly increasing linear latencies.A polynomial-time method that turns the optimal flow into a Nash flow by deleting the edges not used by the optimal flow, and performing minimal modifications on the latencies of the remaining ones. Our results provide a deeper understanding of the computational complexity of recognizing the most severe manifestations of Braess's paradox, and our techniques show novel ways of using the probabilistic method and of exploiting convex separable quadratic programs. © 2012 Elsevier B.V. All rights reserved. en
heal.journalName Theoretical Computer Science en
dc.identifier.doi 10.1016/j.tcs.2012.04.033 en
dc.identifier.volume 448 en
dc.identifier.spage 9 en
dc.identifier.epage 20 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής