dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Freeman, D |
en |
dc.contributor.author |
Haydon, R |
en |
dc.contributor.author |
Odell, E |
en |
dc.contributor.author |
Raikoftsalis, T |
en |
dc.contributor.author |
Schlumprecht, T |
en |
dc.contributor.author |
Zisimopoulou, D |
en |
dc.date.accessioned |
2014-03-01T02:08:51Z |
|
dc.date.available |
2014-03-01T02:08:51Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00221236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29733 |
|
dc.subject |
Bourgain-Delbaen spaces |
en |
dc.subject |
Embedding Banach spaces |
en |
dc.subject |
Scalar plus compact |
en |
dc.subject |
Very few operators |
en |
dc.title |
Embedding uniformly convex spaces into spaces with very few operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jfa.2011.10.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jfa.2011.10.004 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We prove that every separable uniformly convex Banach space X embeds into a Banach space Z which has the property that all bounded linear operators on Z are compact perturbations of scalar multiples of the identity. More generally, the result holds for all separable reflexive Banach spaces of Szlenk index ω0. © 2011 Elsevier Inc. |
en |
heal.journalName |
Journal of Functional Analysis |
en |
dc.identifier.doi |
10.1016/j.jfa.2011.10.004 |
en |
dc.identifier.volume |
262 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
825 |
en |
dc.identifier.epage |
849 |
en |