dc.contributor.author |
Keramiotis, C |
en |
dc.contributor.author |
Vourliotakis, G |
en |
dc.contributor.author |
Skevis, G |
en |
dc.contributor.author |
Founti, MA |
en |
dc.contributor.author |
Esarte, C |
en |
dc.contributor.author |
Sanchez, NE |
en |
dc.contributor.author |
Millera, A |
en |
dc.contributor.author |
Bilbao, R |
en |
dc.contributor.author |
Alzueta, MU |
en |
dc.date.accessioned |
2014-03-01T02:08:58Z |
|
dc.date.available |
2014-03-01T02:08:58Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03605442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29753 |
|
dc.subject |
Detailed kinetics |
en |
dc.subject |
Methane mixtures |
en |
dc.subject |
Pyrolysis |
en |
dc.subject |
Soot |
en |
dc.subject.other |
Bath gas |
en |
dc.subject.other |
Chromatographic systems |
en |
dc.subject.other |
Computational results |
en |
dc.subject.other |
Computational studies |
en |
dc.subject.other |
Detailed chemical kinetic |
en |
dc.subject.other |
Detailed kinetics |
en |
dc.subject.other |
Flow reactors |
en |
dc.subject.other |
Fuel cell system |
en |
dc.subject.other |
Gaseous species |
en |
dc.subject.other |
Laboratory reactors |
en |
dc.subject.other |
Model simulation |
en |
dc.subject.other |
Partial oxidations |
en |
dc.subject.other |
Syn-gas |
en |
dc.subject.other |
Temperature range |
en |
dc.subject.other |
Atmospheric pressure |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Ethane |
en |
dc.subject.other |
Gas chromatography |
en |
dc.subject.other |
Kinetics |
en |
dc.subject.other |
Methane |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Pyrolysis |
en |
dc.subject.other |
Soot |
en |
dc.subject.other |
Synthesis gas |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
atmospheric pressure |
en |
dc.subject.other |
carbon dioxide |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
fuel cell |
en |
dc.subject.other |
methane |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
pyrolysis |
en |
dc.subject.other |
reaction kinetics |
en |
dc.subject.other |
temperature effect |
en |
dc.title |
Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.energy.2012.02.065 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.energy.2012.02.065 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A study of the pyrolysis of methane mixtures in a laboratory reactor, exploring the influence of the bath gas used (N2 and CO2) and the presence of small amounts of ethane to simulate natural gas, has been carried out at atmospheric pressure and the 1250-1500 K temperature range. Exhaust gaseous species analysis was realized using a gas chromatographic system and total soot was determined by collecting and weighing it. The study can be useful for understanding and optimizing the performance of modern engines, gas turbines and some fuel cell systems where the syngas feed is obtained from the partial oxidation of different mixtures with possible formation of soot and other undesired products. Model simulations using two detailed kinetic mechanisms have been performed. Overall, experimental and computational results are in reasonable agreement, with some exceptions in some minor species. The work provides a basis for further development and optimization of existing detailed chemical kinetic schemes. © 2012 Elsevier Ltd. |
en |
heal.journalName |
Energy |
en |
dc.identifier.doi |
10.1016/j.energy.2012.02.065 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
103 |
en |
dc.identifier.epage |
110 |
en |