dc.contributor.author |
Xu, XF |
en |
dc.contributor.author |
Stefanou, G |
en |
dc.date.accessioned |
2014-03-01T02:08:59Z |
|
dc.date.available |
2014-03-01T02:08:59Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
8756758X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29760 |
|
dc.subject |
crack |
en |
dc.subject |
crack density |
en |
dc.subject |
damage |
en |
dc.subject |
ductile-brittle transition |
en |
dc.subject |
micro-crack |
en |
dc.subject |
microporosity |
en |
dc.subject |
porosity |
en |
dc.subject |
void shape |
en |
dc.subject.other |
Crack density |
en |
dc.subject.other |
Cracked solid |
en |
dc.subject.other |
damage |
en |
dc.subject.other |
Ductile-brittle transition |
en |
dc.subject.other |
Effective elastic modulus |
en |
dc.subject.other |
Explicit bounds |
en |
dc.subject.other |
Isotropic mixtures |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Random orientations |
en |
dc.subject.other |
Spheroidal voids |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Variational formulation |
en |
dc.subject.other |
Void shape |
en |
dc.subject.other |
Aspect ratio |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.subject.other |
Microporosity |
en |
dc.subject.other |
Porosity |
en |
dc.subject.other |
Cracks |
en |
dc.title |
Explicit bounds on elastic moduli of solids containing isotropic mixture of cracks and voids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1460-2695.2012.01663.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1460-2695.2012.01663.x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A variational formulation has been recently proposed by the authors (Xu X.F. and Stefanou, G. (2011). Int J Multiscale Comput Engng 9(3) pp. 347-363) to evaluate effective elastic moduli of randomly cracked solids. Using this formulation, explicit expressions have been obtained for the upper bounds of the elastic moduli in the case of penny-shaped and slit-like random cracks with parallel and random orientations subject to a spherical exclusion constraint. In this paper, it is shown that the bounds derived previously are directly applicable to solids containing isotropic mixture of cracks with no exclusion constraint, which is a more general case for a cracked solid. The bounds are further extended to solids containing spheroidal voids that are characterized with finite value of aspect ratios. © 2012 Blackwell Publishing Ltd. |
en |
heal.journalName |
Fatigue and Fracture of Engineering Materials and Structures |
en |
dc.identifier.doi |
10.1111/j.1460-2695.2012.01663.x |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
708 |
en |
dc.identifier.epage |
717 |
en |