dc.contributor.author |
Margaris, ID |
en |
dc.contributor.author |
Papathanassiou, SA |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.contributor.author |
Hansen, AD |
en |
dc.contributor.author |
Sorensen, P |
en |
dc.date.accessioned |
2014-03-01T02:09:15Z |
|
dc.date.available |
2014-03-01T02:09:15Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
19493029 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29782 |
|
dc.subject |
Autonomous systems |
en |
dc.subject |
balance control |
en |
dc.subject |
delta control |
en |
dc.subject |
frequency control |
en |
dc.subject |
wind power |
en |
dc.subject.other |
Autonomous power system |
en |
dc.subject.other |
Autonomous systems |
en |
dc.subject.other |
Balance control |
en |
dc.subject.other |
Conventional generation |
en |
dc.subject.other |
Doubly fed induction generator (DFIG) |
en |
dc.subject.other |
Droop characteristics |
en |
dc.subject.other |
High winds |
en |
dc.subject.other |
Permanent magnet synchronous generator |
en |
dc.subject.other |
Primary frequency control |
en |
dc.subject.other |
Primary reserve |
en |
dc.subject.other |
Study case |
en |
dc.subject.other |
Transient frequency |
en |
dc.subject.other |
Asynchronous generators |
en |
dc.subject.other |
Electric fault currents |
en |
dc.subject.other |
Electric frequency control |
en |
dc.subject.other |
Frequency response |
en |
dc.subject.other |
Synchronous generators |
en |
dc.subject.other |
Wind power |
en |
dc.title |
Frequency Control in Autonomous Power Systems with High Wind Power Penetration |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TSTE.2011.2174660 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TSTE.2011.2174660 |
en |
heal.identifier.secondary |
6170988 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
This paper presents an investigation on wind turbine (WT) contribution to the frequency control of noninterconnected island systems. The capability of WTs to participate in the primary frequency control and offer primary reserve is discussed. The investigation includes both transient frequency support (inertial response) and permanent frequency response (droop characteristic), as well as the combined application of these concepts. A quantitative analysis is presented for the expected benefits and drawbacks of each method, including the appropriate selection of their parameters. The power system of Rhodes Island has been selected as a study case, which includes different types of conventional generation and the three basic WT types, based on Active-Stall Induction Generator (ASIG), Doubly Fed Induction Generator (DFIG), and Permanent Magnet Synchronous Generator (PMSG). © 2012 IEEE. |
en |
heal.journalName |
IEEE Transactions on Sustainable Energy |
en |
dc.identifier.doi |
10.1109/TSTE.2011.2174660 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
189 |
en |
dc.identifier.epage |
199 |
en |