dc.contributor.author |
Zanin, DA |
en |
dc.contributor.author |
Cabrera, H |
en |
dc.contributor.author |
De Pietro, LG |
en |
dc.contributor.author |
Pikulski, M |
en |
dc.contributor.author |
Goldmann, M |
en |
dc.contributor.author |
Ramsperger, U |
en |
dc.contributor.author |
Pescia, D |
en |
dc.contributor.author |
Xanthakis, JP |
en |
dc.date.accessioned |
2014-03-01T02:09:15Z |
|
dc.date.available |
2014-03-01T02:09:15Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
10765670 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29784 |
|
dc.subject |
electron microscopy |
en |
dc.subject |
Field emission |
en |
dc.subject |
nanotechnology |
en |
dc.subject.other |
Characteristic length |
en |
dc.subject.other |
Conversion factor |
en |
dc.subject.other |
Near-field emission |
en |
dc.subject.other |
Positioning techniques |
en |
dc.subject.other |
Secondary electrons |
en |
dc.subject.other |
Spatial resolution |
en |
dc.subject.other |
Strong electric fields |
en |
dc.subject.other |
Subnanometers |
en |
dc.subject.other |
Tip surfaces |
en |
dc.subject.other |
Topographic images |
en |
dc.subject.other |
Vertical resolution |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Electron microscopy |
en |
dc.subject.other |
Electrons |
en |
dc.subject.other |
Field emission |
en |
dc.subject.other |
Field emission microscopes |
en |
dc.subject.other |
Nanotechnology |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Electron emission |
en |
dc.title |
Fundamental aspects of near-field emission scanning electron microscopy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/B978-0-12-394396-5.00005-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/B978-0-12-394396-5.00005-1 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The fundamental aspects of near-field emission scanning electron microscopy (NFESEM) were studied. In NFESEM electrons are emitted from a tip through field emission (FE), interact with the sample and produce secondary electrons (SE), which are ejected from the surface and can escape the strong electric field environment in the tip-surface region. By scanning the tip parallel to the surface, using the ultra-precise positioning techniques known from STM technology and measuring the FE and/or SE current, a topographic image of the surface was obtained, with subnanometer spatial vertical resolution and a few nanometers of lateral spatial resolution. NFESEM, instead, is ideally performed in constant height (CH) mode, that is, while scanning the distance between tip and surface is kept at a predefined value. The study revealed that the closeness between the two electrodes represented by the tip and the surface introduces a characteristic length d, the distance tip surface that seems to remove the uncertainty about the conversion factor and allows the electric field at the tip to be estimated quite precisely. |
en |
heal.journalName |
Advances in Imaging and Electron Physics |
en |
dc.identifier.doi |
10.1016/B978-0-12-394396-5.00005-1 |
en |
dc.identifier.volume |
170 |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
258 |
en |