dc.contributor.author |
Tanner, JL |
en |
dc.contributor.author |
Mousadakos, D |
en |
dc.contributor.author |
Giannakopoulos, K |
en |
dc.contributor.author |
Skotadis, E |
en |
dc.contributor.author |
Tsoukalas, D |
en |
dc.date.accessioned |
2014-03-01T02:09:17Z |
|
dc.date.available |
2014-03-01T02:09:17Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09574484 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29797 |
|
dc.subject.other |
Current expression |
en |
dc.subject.other |
Electrical resistances |
en |
dc.subject.other |
Flexible substrate |
en |
dc.subject.other |
High strains |
en |
dc.subject.other |
Intermediate densities |
en |
dc.subject.other |
Lithographic processing |
en |
dc.subject.other |
Metallic behaviors |
en |
dc.subject.other |
Nanoparticle array |
en |
dc.subject.other |
Nanoparticle assemblies |
en |
dc.subject.other |
Nanoparticle deposition |
en |
dc.subject.other |
Nanoparticle layers |
en |
dc.subject.other |
Platinum nanoparticles |
en |
dc.subject.other |
Room temperature |
en |
dc.subject.other |
Silicon Technologies |
en |
dc.subject.other |
Strain gauge factor |
en |
dc.subject.other |
Strain sensitivity |
en |
dc.subject.other |
Surface density |
en |
dc.subject.other |
Vacuum techniques |
en |
dc.subject.other |
Platinum |
en |
dc.subject.other |
Nanoparticles |
en |
dc.title |
High strain sensitivity controlled by the surface density of platinum nanoparticles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0957-4484/23/28/285501 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0957-4484/23/28/285501 |
en |
heal.identifier.secondary |
285501 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We report a controllable strain gauge factor obtained using a two-dimensional nanoparticle layer formed from platinum nanoparticles. A vacuum technique is used for room temperature nanoparticle deposition that allows control of the electrical resistance of the film, exhibiting semiconducting-like behavior when nanoparticle arrays cover the surface below a threshold value while above it a metallic behavior is prevalent. The highest sensitivity is obtained for intermediate density values of the nanoparticle assemblies, which could be explained using a tunneling and hopping current expression. The device, which exhibits more than one order of magnitude higher strain sensitivity than continuous metallic films, is fabricated at room temperature through standard lithographic processing allowing for miniaturization and easy integration in silicon technology or flexible substrates. © 2012 IOP Publishing Ltd. |
en |
heal.journalName |
Nanotechnology |
en |
dc.identifier.doi |
10.1088/0957-4484/23/28/285501 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
28 |
en |