dc.contributor.author |
Anagnostopoulos, VA |
en |
dc.contributor.author |
Sarantopoulos, Y |
en |
dc.contributor.author |
Tonge, AM |
en |
dc.date.accessioned |
2014-03-01T02:09:18Z |
|
dc.date.available |
2014-03-01T02:09:18Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
0025584X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29799 |
|
dc.subject |
Hardy-Hilbert's inequality |
en |
dc.subject |
Norm estimates |
en |
dc.subject |
Permanents |
en |
dc.subject |
Polynomials |
en |
dc.title |
Homogeneous polynomials and extensions of Hardy-Hilbert's inequality |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/mana.201010035 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/mana.201010035 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
If L is a continuous symmetric n-linear form on a real or complex Hilbert space and L̂ A is the associated continuous n-homogeneous polynomial, then ||L|| = ||L̂||. We give a simple proof of this well-known result, which works for both real and complex Hilbert spaces, by using a classical inequality due to S. Bernstein for trigonometric polynomials. As an application, an open problem for the optimal lower bound of the norm of a homogeneous polynomial, which is a product of linear forms, is related to the so-called permanent function of an n × n positive definite Hermitian matrix. We have also derived generalizations of Hardy-Hilbert's inequality. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
en |
heal.journalName |
Mathematische Nachrichten |
en |
dc.identifier.doi |
10.1002/mana.201010035 |
en |
dc.identifier.volume |
285 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
47 |
en |
dc.identifier.epage |
55 |
en |