HEAL DSpace

Hydrodynamic exciting forces on a submerged oblate spheroid in regular waves

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatjigeorgiou, IK en
dc.date.accessioned 2014-03-01T02:09:18Z
dc.date.available 2014-03-01T02:09:18Z
dc.date.issued 2012 en
dc.identifier.issn 00457930 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29802
dc.subject Exciting forces en
dc.subject Hydrodynamics en
dc.subject Multipole expansions en
dc.subject Oblate spheroids en
dc.subject.other Addition theorem en
dc.subject.other Analytic solution en
dc.subject.other Analytical process en
dc.subject.other Associated Legendre functions en
dc.subject.other Deep Water en
dc.subject.other Diffraction components en
dc.subject.other Diffraction problem en
dc.subject.other Exciting forces en
dc.subject.other Fluid domain en
dc.subject.other Free upper surface en
dc.subject.other Harmonic incidents en
dc.subject.other Incident waves en
dc.subject.other Infinite series en
dc.subject.other Multipole expansions en
dc.subject.other Multipoles en
dc.subject.other Oblate spheroid en
dc.subject.other Oblate spheroidal coordinates en
dc.subject.other Polar coordinate en
dc.subject.other Regular waves en
dc.subject.other Singular points en
dc.subject.other Spheroidal body en
dc.subject.other Velocity potentials en
dc.subject.other Water depth en
dc.subject.other Diffraction en
dc.subject.other Hydrodynamics en
dc.title Hydrodynamic exciting forces on a submerged oblate spheroid in regular waves en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compfluid.2011.12.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compfluid.2011.12.013 en
heal.publicationDate 2012 en
heal.abstract It is the purpose of this study to provide the analytic solution for the hydrodynamic diffraction problem by stationary, submerged oblate spheroidal bodies subjected to harmonic incident waves in deep water. The analytical process employs the multipole expansion terms derived by Thorne [1] which describe the velocity potential at singular points within a fluid domain with free upper surface and infinite water depth. The multipole potentials are used to analytically formulate the diffraction component of the velocity potential which is initially described by relations involving both spherical and polar coordinates. The goal is to transform the constituent terms of the multipole potentials as well as the incident wave component in oblate spheroidal coordinates. To this end, the appropriate addition theorems are derived which recast Thorne's [1] formulas into infinite series of associated Legendre functions. © 2011 Elsevier Ltd. en
heal.journalName Computers and Fluids en
dc.identifier.doi 10.1016/j.compfluid.2011.12.013 en
dc.identifier.volume 57 en
dc.identifier.spage 151 en
dc.identifier.epage 162 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής