dc.contributor.author |
Koroneos, CJ |
en |
dc.contributor.author |
Nanaki, EA |
en |
dc.date.accessioned |
2014-03-01T02:09:29Z |
|
dc.date.available |
2014-03-01T02:09:29Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09596526 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29852 |
|
dc.subject |
Greece |
en |
dc.subject |
Life cycle cost |
en |
dc.subject |
Life cycle environmental impact assessment |
en |
dc.subject |
Solar water heater |
en |
dc.subject.other |
Assembly process |
en |
dc.subject.other |
Domestic use |
en |
dc.subject.other |
Environmental benefits |
en |
dc.subject.other |
Environmental performance |
en |
dc.subject.other |
Functional units |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Heat storage tanks |
en |
dc.subject.other |
Hot water |
en |
dc.subject.other |
Life Cycle Assessment (LCA) |
en |
dc.subject.other |
Life cycle savings |
en |
dc.subject.other |
Life-cycle environmental impact |
en |
dc.subject.other |
Lifecycle costs |
en |
dc.subject.other |
Manufacturing stages |
en |
dc.subject.other |
NO emissions |
en |
dc.subject.other |
Ozone depletion |
en |
dc.subject.other |
Payback time |
en |
dc.subject.other |
Resource consumption |
en |
dc.subject.other |
Solar thermal heating |
en |
dc.subject.other |
System boundary |
en |
dc.subject.other |
Thessaloniki |
en |
dc.subject.other |
Waste stream |
en |
dc.subject.other |
Air pollution |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Environmental impact |
en |
dc.subject.other |
Environmental impact assessments |
en |
dc.subject.other |
Environmental management |
en |
dc.subject.other |
Eutrophication |
en |
dc.subject.other |
Glass |
en |
dc.subject.other |
Greenhouse effect |
en |
dc.subject.other |
Heavy metals |
en |
dc.subject.other |
Manufacture |
en |
dc.subject.other |
Ozone layer |
en |
dc.subject.other |
Solar water heaters |
en |
dc.subject.other |
Life cycle |
en |
dc.subject.other |
Thessaloniki |
en |
dc.title |
Life cycle environmental impact assessment of a solar water heater |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jclepro.2012.07.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jclepro.2012.07.001 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The technical and environmental performance of a solar water heater (SWH) is examined using the method of life cycle assessment (LCA). The present LCA study quantifies the environmental benefits of the installation of a SWH with electricity as auxiliary for domestic use in the city of Thessaloniki. Solar thermal heating produces no emissions during operation but some small levels of emissions are produced during the manufacture and installation of components and systems. This work examines the manufacturing stages of the SWH and records resource consumption and waste streams to the environment. The system boundary includes the production of raw materials such as steel, glass, copper, aluminium, glass fibber and polyurethane insulators, the manufacturing of the various parts of the SWH such as the solar collector and the heat storage tank, and finally the assembly process. The functional unit chosen is 1 MW of produced hot water. The environmental impacts taken into consideration in the study, are the greenhouse effect, ozone depletion, acidification, eutrophication, heavy metals, carcinogens, winter smog and summer smog. The system can provide 1702 kWh year-1 and the solar contribution is 58.5%. The financial characteristics of the system investigated give life cycle savings equal to 4280.0 and pay-back time equal to 5 years. © 2012 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Journal of Cleaner Production |
en |
dc.identifier.doi |
10.1016/j.jclepro.2012.07.001 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.spage |
154 |
en |
dc.identifier.epage |
161 |
en |