dc.contributor.author |
Dodos, P |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.contributor.author |
Tyros, K |
en |
dc.date.accessioned |
2014-03-01T02:09:30Z |
|
dc.date.available |
2014-03-01T02:09:30Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09635483 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29862 |
|
dc.subject.other |
Cardinalities |
en |
dc.subject.other |
Finite subsets |
en |
dc.subject.other |
Homogeneous tree |
en |
dc.subject.other |
Integer-N |
en |
dc.subject.other |
Probability spaces |
en |
dc.subject.other |
Subtrees |
en |
dc.subject.other |
Computer science |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Forestry |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Forestry |
en |
dc.subject.other |
Probability |
en |
dc.title |
Measurable events indexed by trees |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0963548312000053 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0963548312000053 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A tree T is said to be homogeneous if it is uniquely rooted and there exists an integer b ≤ 2, called the branching number of T, such that every t ∈ T has exactly b immediate successors. We study the behaviour of measurable events in probability spaces indexed by homogeneous trees. Precisely, we show that for every integer b ≤ 2 and every integer n ≤ 1 there exists an integer q(b,n) with the following property. If T is a homogeneous tree with branching number b and {At:t ∈ T} is a family of measurable events in a probability space (ω,σ,μ) satisfying μ(At)≤ε>0 for every t ∈ T, then for every 0<θ<ε there exists a strong subtree S of T of infinite height, such that for every finite subset F of S of cardinality n ≤ 1 we have μ(1∈FAt) ≥θq(b,n) In fact, we can take q(b,n)= ((2b-1)2n-1-1).(2b-2)-1. A finite version of this result is also obtained. © 2012 Cambridge University Press. |
en |
heal.journalName |
Combinatorics Probability and Computing |
en |
dc.identifier.doi |
10.1017/S0963548312000053 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
374 |
en |
dc.identifier.epage |
411 |
en |