HEAL DSpace

Mechanisms of wetting transitions on patterned surfaces: Continuum and mesoscopic analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavousanakis, ME en
dc.contributor.author Colosqui, CE en
dc.contributor.author Kevrekidis, IG en
dc.contributor.author Papathanasiou, AG en
dc.date.accessioned 2014-03-01T02:11:24Z
dc.date.available 2014-03-01T02:11:24Z
dc.date.issued 2012 en
dc.identifier.issn 1744683X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29895
dc.subject.other Capillary phenomena en
dc.subject.other Computational analysis en
dc.subject.other Computational tools en
dc.subject.other Equilibrium solutions en
dc.subject.other Equilibrium state en
dc.subject.other External electric field en
dc.subject.other External stimulus en
dc.subject.other Material chemistry en
dc.subject.other Mesoscopics en
dc.subject.other Micrometer scale en
dc.subject.other Optimal switching en
dc.subject.other Patterned surface en
dc.subject.other Relative stabilities en
dc.subject.other Solid surface en
dc.subject.other Superhydrophobicity en
dc.subject.other Systems levels en
dc.subject.other Technological applications en
dc.subject.other Thermal heating en
dc.subject.other Wetting behavior en
dc.subject.other Wetting transitions en
dc.subject.other Computational methods en
dc.subject.other Electric fields en
dc.subject.other Energy barriers en
dc.subject.other Hysteresis en
dc.subject.other Superconducting materials en
dc.subject.other Surface roughness en
dc.subject.other Surfaces en
dc.subject.other Wetting en
dc.title Mechanisms of wetting transitions on patterned surfaces: Continuum and mesoscopic analysis en
heal.type journalArticle en
heal.identifier.primary 10.1039/c2sm25377a en
heal.identifier.secondary http://dx.doi.org/10.1039/c2sm25377a en
heal.publicationDate 2012 en
heal.abstract Micro-or nano-structurally roughened solid surfaces exhibit a rich variety of wetting behavior types, ranging from superhydro- or superoleophobicity to superhydro- or superoleophilicity. Depending on their material chemistry, the scale and morphology of their roughness or even the application of external electric fields, their apparent wettability can be significantly modified giving rise to challenging technological applications by exploiting the associated capillary phenomena at the micrometer scale. Certain applications, however, are limited by hysteretic wetting transitions, which inhibit spontaneous switching between wetting states, requiring external stimuli or actuation like thermal heating. The presence of surface roughness, necessary for the manifestation of the superhydrophobicity, induces multiplicity of wetting states and the inevitable hysteresis appears due to considerable energy barriers separating the equilibrium states. Here, by using continuum as well as mesoscopic computational analysis we perform a systems level study of the mechanisms of wetting transitions on model structured solid surfaces. By tracing entire equilibrium solution families and determining their relative stability we are able to illuminate mechanisms of wetting transitions and compute the corresponding energy barriers. The implementation of our analysis to 'real world' structured or unstructured surfaces is straightforward, rendering our computational tools valuable not only for the realization of surfaces with addressable wettability through roughness design, but also for the design of suitable actuation for optimal switching between wetting states. This journal is © The Royal Society of Chemistry 2012. en
heal.journalName Soft Matter en
dc.identifier.doi 10.1039/c2sm25377a en
dc.identifier.volume 8 en
dc.identifier.issue 30 en
dc.identifier.spage 3928 en
dc.identifier.epage 3936 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής