HEAL DSpace

Medical imaging correction: A comparative study of five contrast and brightness matching methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Matsopoulos, GK en
dc.date.accessioned 2014-03-01T02:11:25Z
dc.date.available 2014-03-01T02:11:25Z
dc.date.issued 2012 en
dc.identifier.issn 01692607 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29896
dc.subject Brightness matching en
dc.subject Contrast matching en
dc.subject Digital Subtraction Radiography en
dc.subject Features of merit en
dc.subject Statistical relevance en
dc.subject.other Brightness matching en
dc.subject.other Contrast matching en
dc.subject.other Features of merit en
dc.subject.other Statistical relevance en
dc.subject.other Subtraction radiography en
dc.subject.other Graphic methods en
dc.subject.other Least squares approximations en
dc.subject.other Medical imaging en
dc.subject.other Luminance en
dc.subject.other article en
dc.subject.other brightness en
dc.subject.other comparative study en
dc.subject.other computer assisted tomography en
dc.subject.other contrast en
dc.subject.other diagnostic imaging en
dc.subject.other film en
dc.subject.other filter en
dc.subject.other histogram en
dc.subject.other image processing en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.title Medical imaging correction: A comparative study of five contrast and brightness matching methods en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cmpb.2011.03.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cmpb.2011.03.011 en
heal.publicationDate 2012 en
heal.abstract Contrast and brightness matching are often required in many medical imaging applications, especially when comparing medical data acquired over different time periods, due to dissimilarities in the acquisition process. Numerous methods have been proposed in this field, ranging from simple correction filters to more complicated recursive techniques. This paper presents a comprehensive comparison of five methods for matching the contrast and brightness of medical image pairs, namely, Contrast Stretching, Ruttimann's Robust Film Correction, Boxcar Filtering, Least-Squares Approximation and Histogram Registration. The five methods were applied to a total of 100 image pairs, divided into five sets, in order to evaluate the performance of the compared methods on images with different levels of contrast, brightness and combinational contrast and brightness variations. Qualitative evaluation was performed by means of visual assessment on the corrected images as well as on digitally subtracted images, in order to estimate the deviations relative to the reference data. Quantitative evaluation was performed by pair-wise statistical evaluation on all image pairs in terms of specific features of merit based on widely used metrics. Following qualitative and quantitative analysis, it was deduced that the Histogram Registration method systematically outperformed the other four methods in comparison in most cases on average. © 2011 Elsevier Ireland Ltd. en
heal.journalName Computer Methods and Programs in Biomedicine en
dc.identifier.doi 10.1016/j.cmpb.2011.03.011 en
dc.identifier.volume 106 en
dc.identifier.issue 3 en
dc.identifier.spage 308 en
dc.identifier.epage 327 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής