dc.contributor.author |
Kiourti, A |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:11:26Z |
|
dc.date.available |
2014-03-01T02:11:26Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
0018926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29898 |
|
dc.subject |
Implantable antenna |
en |
dc.subject |
industrial |
en |
dc.subject |
medical implant communications service band |
en |
dc.subject |
optimization |
en |
dc.subject |
scientific and medical band |
en |
dc.subject |
specific absorption rate (SAR) |
en |
dc.subject |
telemetry |
en |
dc.subject.other |
Implantable antennas |
en |
dc.subject.other |
industrial |
en |
dc.subject.other |
Medical implant communications services |
en |
dc.subject.other |
scientific and medical band |
en |
dc.subject.other |
Specific absorption rate |
en |
dc.subject.other |
Biotelemetry |
en |
dc.subject.other |
Budget control |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Electromagnetic wave absorption |
en |
dc.subject.other |
Finite difference time domain method |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Radar antennas |
en |
dc.subject.other |
Telemetering |
en |
dc.subject.other |
Telemetering equipment |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Antennas |
en |
dc.title |
Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAP.2012.2201078 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2012.2201078 |
en |
heal.identifier.secondary |
6204048 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We study the design and radiation performance of novel miniature antennas for integration in head-implanted medical devices operating in the MICS (402.0-405.0 MHz) and ISM (433.1-434.8, 868.0-868.6 and 902.8-928.0 MHz) bands. A parametric model of a skin-implantable antenna is proposed, and a prototype is fabricated and tested. To speed-up antenna design, a two-step methodology is suggested. This involves approximate antenna design inside a simplified geometry and further Quasi-Newton optimization inside a canonical model of the intended implantation site. Antennas are further analyzed inside an anatomical human head model. Results indicate strong dependence of the exhibited radiation performance (radiation pattern, gain, specific absorption rate and quality of communication with exterior equipment) on design parameters and operation frequency. The study provides valuable insight into the design of implantable antennas, addressing the suitability of canonical against anatomical tissue models for design purposes, and assessing patient safety and link budget at various frequencies. Finite Element and Finite Difference Time Domain numerical solvers are used at different stages of the antenna design and analysis procedures to suit specific needs. The proposed design methodology can be applied to optimize antennas for several implantation scenarios and biotelemetry applications. © 1963-2012 IEEE. |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2012.2201078 |
en |
dc.identifier.volume |
60 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
3568 |
en |
dc.identifier.epage |
3575 |
en |