HEAL DSpace

Model-driven development of covariances for spatiotemporal environmental health assessment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kolovos, A en
dc.contributor.author Angulo, JM en
dc.contributor.author Modis, K en
dc.contributor.author Papantonopoulos, G en
dc.contributor.author Wang, J-F en
dc.contributor.author Christakos, G en
dc.date.accessioned 2014-03-01T02:11:27Z
dc.date.available 2014-03-01T02:11:27Z
dc.date.issued 2012 en
dc.identifier.issn 01676369 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29901
dc.subject BME en
dc.subject Covariance models en
dc.subject Environmental assessment en
dc.subject Prediction en
dc.subject Spatiotemporal en
dc.title Model-driven development of covariances for spatiotemporal environmental health assessment en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10661-012-2593-1 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10661-012-2593-1 en
heal.publicationDate 2012 en
heal.abstract Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country. © 2012 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Environmental Monitoring and Assessment en
dc.identifier.doi 10.1007/s10661-012-2593-1 en
dc.identifier.volume 185 en
dc.identifier.issue 1 en
dc.identifier.spage 815 en
dc.identifier.epage 831 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής