dc.contributor.author |
Veveakis, E |
en |
dc.contributor.author |
Sulem, J |
en |
dc.contributor.author |
Stefanou, I |
en |
dc.date.accessioned |
2014-03-01T02:11:27Z |
|
dc.date.available |
2014-03-01T02:11:27Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
01918141 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29904 |
|
dc.subject |
Cosserat Continuum |
en |
dc.subject |
Micro-inertia |
en |
dc.subject |
Reaction kinetics |
en |
dc.subject |
Shear heating |
en |
dc.subject |
Undrained adiabatic shearing |
en |
dc.subject.other |
Adiabatic shearing |
en |
dc.subject.other |
Chemical decomposition |
en |
dc.subject.other |
Cosserat continuum |
en |
dc.subject.other |
Decomposition reaction |
en |
dc.subject.other |
Fault gouge |
en |
dc.subject.other |
Higher order continuum |
en |
dc.subject.other |
Ill posed problem |
en |
dc.subject.other |
Localization of deformation |
en |
dc.subject.other |
Micro-structural |
en |
dc.subject.other |
Microinertia |
en |
dc.subject.other |
Rotational degrees of freedom |
en |
dc.subject.other |
Seismic deformation |
en |
dc.subject.other |
Shear heating |
en |
dc.subject.other |
Simple shear |
en |
dc.subject.other |
Slip rates |
en |
dc.subject.other |
Thermal pressurization |
en |
dc.subject.other |
Ultra-thin |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Reaction kinetics |
en |
dc.subject.other |
Fault slips |
en |
dc.subject.other |
continuum mechanics |
en |
dc.subject.other |
coseismic process |
en |
dc.subject.other |
decomposition |
en |
dc.subject.other |
deformation |
en |
dc.subject.other |
fault gouge |
en |
dc.subject.other |
microstructure |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
reaction kinetics |
en |
dc.subject.other |
shear zone |
en |
dc.title |
Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jsg.2011.09.012 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jsg.2011.09.012 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults. © 2011 Elsevier Ltd. |
en |
heal.journalName |
Journal of Structural Geology |
en |
dc.identifier.doi |
10.1016/j.jsg.2011.09.012 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.spage |
254 |
en |
dc.identifier.epage |
264 |
en |