HEAL DSpace

Monitoring urban changes based on scale-space filtering and object-oriented classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doxani, G en
dc.contributor.author Karantzalos, K en
dc.contributor.author Tsakiri-Strati, M en
dc.date.accessioned 2014-03-01T02:11:28Z
dc.date.available 2014-03-01T02:11:28Z
dc.date.issued 2012 en
dc.identifier.issn 15698432 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29908
dc.subject Morphological scale space filtering en
dc.subject Multivariate alteration detection en
dc.subject Object-based image analysis en
dc.subject.other algorithm en
dc.subject.other detection method en
dc.subject.other environmental monitoring en
dc.subject.other image analysis en
dc.subject.other image classification en
dc.subject.other image resolution en
dc.subject.other multivariate analysis en
dc.subject.other sensor en
dc.subject.other urban area en
dc.title Monitoring urban changes based on scale-space filtering and object-oriented classification en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jag.2011.07.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jag.2011.07.002 en
heal.publicationDate 2012 en
heal.abstract This paper introduces a multi-temporal image processing framework towards an efficient and (semi-) automated detection of urban changes. Nonlinear scale space filtering was embedded in an object-based classification procedure and the resulted simplified images provided a more compact and reliable source in order to generate image objects in various scales. In this manner the multiresolution segmentation outcome was constrained qualitatively. Multivariate alteration detection (MAD) transformation was applied afterwards on the simplified data to facilitate the detection of possible changes. The altered image regions along with the simplified data were further analyzed through a multilevel knowledge-based classification scheme. The developed algorithm was implemented on a number of multi-temporal data acquired by different remote sensing sensors. The qualitative and quantitative evaluation of change detection results performed with the help of the appropriate ancillary ground truth data. Experimental results demonstrated the effectiveness of the developed scale-space, object-oriented classification framework. © 2011 Elsevier B.V. en
heal.journalName International Journal of Applied Earth Observation and Geoinformation en
dc.identifier.doi 10.1016/j.jag.2011.07.002 en
dc.identifier.volume 15 en
dc.identifier.issue 1 en
dc.identifier.spage 38 en
dc.identifier.epage 48 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής