dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:11:28Z |
|
dc.date.available |
2014-03-01T02:11:28Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00221236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29913 |
|
dc.subject |
Antimaximum principle |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Critical point of mountain pass type |
en |
dc.subject |
Homotopy |
en |
dc.subject |
Local minimizer |
en |
dc.subject |
Nonlinear regularity theory |
en |
dc.title |
Multiple solutions for asymptotically (p-1)-homogeneous p-Laplacian equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jfa.2011.12.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jfa.2011.12.003 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear elliptic equation driven by the p-Laplacian and with a reaction term which exhibits a (p-1)-homogeneous growth both near ±∞ and near zero. Using critical point theory with truncation techniques, the method of upper-lower solutions and Morse theory, we show that the problem has five nontrivial smooth solutions, four of which have constant sign (two positive and two negative). © 2011 Elsevier Inc. |
en |
heal.journalName |
Journal of Functional Analysis |
en |
dc.identifier.doi |
10.1016/j.jfa.2011.12.003 |
en |
dc.identifier.volume |
262 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
2403 |
en |
dc.identifier.epage |
2435 |
en |