dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Papalini, F |
en |
dc.date.accessioned |
2014-03-01T02:11:28Z |
|
dc.date.available |
2014-03-01T02:11:28Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09262601 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29914 |
|
dc.subject |
Coercive functional |
en |
dc.subject |
Contractible |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Homotopy equivalent |
en |
dc.subject |
Local minimizer |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Near resonance |
en |
dc.title |
Multiple Solutions for Nearly Resonant Nonlinear Dirichlet Problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11118-011-9255-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11118-011-9255-8 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this paper we consider parametric nonlinear elliptic problems driven by the p-Laplacian differential operator and with the parameter λ near λ1, the principal eigenvalue of the negative Dirichlet p-Laplacian (near resonance). We consider both cases when λ < λ1 (near resonance from the left) and when λ > λ1 (near resonance from the right). Our approach combines variational methods based on the critical point theory, together with truncation techniques and Morse theory. © 2011 Springer Science+Business Media B.V. |
en |
heal.journalName |
Potential Analysis |
en |
dc.identifier.doi |
10.1007/s11118-011-9255-8 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
247 |
en |
dc.identifier.epage |
279 |
en |