dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:11:28Z |
|
dc.date.available |
2014-03-01T02:11:28Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09276947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29915 |
|
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Nodal solutions |
en |
dc.subject |
Palais-Smale condition |
en |
dc.subject |
Second deformation theorem |
en |
dc.title |
Multiple Solutions for Nonlinear Coercive Problems with a Nonhomogeneous Differential Operator and a Nonsmooth Potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11228-011-0198-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11228-011-0198-4 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear elliptic problem driven by a nonlinear nonhomogeneous differential operator and a nonsmooth potential. We prove two multiplicity theorems for problems with coercive energy functional. In both theorems we produce three nontrivial smooth solutions. In the second multiplicity theorem, we provide precise sign information for all three solutions (the first positive, the second negative and the third nodal). Out approach is variational, based on the nonsmooth critical point theory. We also prove an auxiliary result relating smooth and Sobolev local minimizer for a large class of locally Lipschitz functionals. © 2011 The Author(s). |
en |
heal.journalName |
Set-Valued and Variational Analysis |
en |
dc.identifier.doi |
10.1007/s11228-011-0198-4 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
417 |
en |
dc.identifier.epage |
443 |
en |