HEAL DSpace

Multi-robot multiple hypothesis tracking for pedestrian tracking

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsokas, NA en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:11:29Z
dc.date.available 2014-03-01T02:11:29Z
dc.date.issued 2012 en
dc.identifier.issn 09295593 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29918
dc.subject Laser-based range sensing en
dc.subject Multi-robot target tracking en
dc.subject Multiple hypothesis tracking en
dc.subject Pedestrian tracking en
dc.subject.other In-field en
dc.subject.other Moving robots en
dc.subject.other Multiple hypothesis tracking en
dc.subject.other Multiple sensors en
dc.subject.other Multirobots en
dc.subject.other One-to-many association en
dc.subject.other Overlapping area en
dc.subject.other Pedestrian tracking en
dc.subject.other Production cycle en
dc.subject.other Range sensing en
dc.subject.other Tracking algorithm en
dc.subject.other Industrial robots en
dc.subject.other Multipurpose robots en
dc.subject.other Sensors en
dc.subject.other Target tracking en
dc.title Multi-robot multiple hypothesis tracking for pedestrian tracking en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10514-011-9259-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10514-011-9259-7 en
heal.publicationDate 2012 en
heal.abstract In this paper the problem of tracking walking people with multiple moving robots is tackled. For this purpose we present an adaptation to the Multiple Hypothesis Tracking method, which unlike classic MHT, allows for one-to-many associations between targets and measurements in each hypothesis production cycle and is thus capable of operating in a scenario involving multiple sensors. Derivation of hypotheses probabilities accounts for the continuously changing overlapping areas in fields of view of the robots sensors and for detection uncertainty. In the context of three experiments involving people walking among moving robots, the successful integration of our tracking algorithm to a real-world setup is assessed. © 2011 Springer Science+Business Media, LLC. en
heal.journalName Autonomous Robots en
dc.identifier.doi 10.1007/s10514-011-9259-7 en
dc.identifier.volume 32 en
dc.identifier.issue 1 en
dc.identifier.spage 63 en
dc.identifier.epage 79 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής