dc.contributor.author |
Bauer, S |
en |
dc.contributor.author |
May, C |
en |
dc.contributor.author |
Dionysiou, D |
en |
dc.contributor.author |
Stamatakos, G |
en |
dc.contributor.author |
Buchler, P |
en |
dc.contributor.author |
Reyes, M |
en |
dc.date.accessioned |
2014-03-01T02:11:30Z |
|
dc.date.available |
2014-03-01T02:11:30Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00189294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29919 |
|
dc.subject |
Brain tumor |
en |
dc.subject |
glioma |
en |
dc.subject |
image analysis |
en |
dc.subject |
tumor biomechanics |
en |
dc.subject |
tumor growth modeling |
en |
dc.subject.other |
Atlas-based segmentation |
en |
dc.subject.other |
Brain atlas |
en |
dc.subject.other |
Brain images |
en |
dc.subject.other |
Brain tumors |
en |
dc.subject.other |
Cellular levels |
en |
dc.subject.other |
Eulerian approach |
en |
dc.subject.other |
Finite element computations |
en |
dc.subject.other |
glioma |
en |
dc.subject.other |
Growth simulation |
en |
dc.subject.other |
Image-based modeling |
en |
dc.subject.other |
Large-scale deformation |
en |
dc.subject.other |
MR images |
en |
dc.subject.other |
Multi-scale Modeling |
en |
dc.subject.other |
Multiphysics model |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Nonrigid registration |
en |
dc.subject.other |
Patient images |
en |
dc.subject.other |
Registration algorithms |
en |
dc.subject.other |
Tissue deformations |
en |
dc.subject.other |
Tumor growth |
en |
dc.subject.other |
tumor growth modeling |
en |
dc.subject.other |
Tumor patient |
en |
dc.subject.other |
Tumor progressions |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Biomechanics |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Cell proliferation |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biomechanics |
en |
dc.subject.other |
brain tumor |
en |
dc.subject.other |
cell proliferation |
en |
dc.subject.other |
finite element analysis |
en |
dc.subject.other |
human |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
model |
en |
dc.subject.other |
nuclear magnetic resonance imaging |
en |
dc.subject.other |
prognosis |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
tumor growth |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Brain Neoplasms |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Glioma |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Enhancement |
en |
dc.subject.other |
Image Interpretation, Computer-Assisted |
en |
dc.subject.other |
Magnetic Resonance Imaging |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.title |
Multiscale modeling for image analysis of brain tumor studies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TBME.2011.2163406 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TBME.2011.2163406 |
en |
heal.identifier.secondary |
5970097 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression. © 2011 IEEE. |
en |
heal.journalName |
IEEE Transactions on Biomedical Engineering |
en |
dc.identifier.doi |
10.1109/TBME.2011.2163406 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
25 |
en |
dc.identifier.epage |
29 |
en |